FastText介绍

fastText原理和文本分类实战,看这一篇就够了

fastText是一个快速文本分类算法,与基于神经网络的分类算法相比有两大优点:
1、fastText在保持高精度的情况下加快了训练速度和测试速度
2、fastText不需要预训练好的词向量,fastText会自己训练词向量
3、fastText两个重要的优化:Hierarchical SoftmaxN-gram

fastText模型架构和word2vec中的CBOW很相似, 不同之处是fastText预测标签而CBOW预测的是中间词,即模型架构类似但是模型的任务不同。下面我们先看一下CBOW的架构:
在这里插入图片描述

 

Hierarchical Softmax的优点:可以将复杂度从N降低到logN

使用n-gram有如下优点
1、为罕见的单词生成更好的单词向量:根据上面的字符级别的n-gram来说,即是这个单词出现的次数很少,但是组成单词的字符和其他单词有共享的部分,因此这一点可以优化生成的单词向量
2、在词汇单词中,即使单词没有出现在训练语料库中,仍然可以从字符级n-gram中构造单词的词向量
3、n-gram可以让模型学习到局部单词顺序的部分信息, 如果不考虑n-gram则便是取每个单词,这样无法考虑到词序所包含的信息,即也可理解为上下文信息,因此通过n-gram的方式关联相邻的几个词,这样会让模型在训练的时候保持词序信息

 

4、为什么fastText甚至可以为语料库中未出现的单词产生词向量
fastText一个重要的特性便是有能力为任何单词产生词向量,即使是未出现的,组装的单词。主要是因为fastText是通过包含在单词中的子字符substring of character来构建单词的词向量,正文中也有论述,因此这种训练模型的方式使得fastText可以为拼写错误的单词或者连接组装的单词产生词向量

5、为什么分层softmax在效果上比完全softmax略差
分层softmax是完全softmax的一个近似,分层softmax可以让我们在大数据集上高效的建立模型,但通常会以损失精度的几个百分点为代价

10、在模型训练时遇到了NaN,为什么会这样

这种现象是可能出现的,很大原因是因为你的学习率太高了,可以尝试降低一下学习率直到不再出现NaN;(我:NN中使用BN来归一化中间结果,从而降低diverge的可能)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值