Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
Analysis: DP. triangle[i][j] = min(triangle[i-1][j-1], triangle[i-1][j]) + triangle[i][j].
public class Solution {
public int minimumTotal(ArrayList<ArrayList<Integer>> triangle) {
int n = triangle.size();
if(n==0) return 0;
for(int i=1; i<n; i++) {
for(int j=0; j<i+1; j++) {
if(j==0) {
triangle.get(i).set(j, triangle.get(i-1).get(j)+triangle.get(i).get(j));
}
else if(j>0 && j<i) {
triangle.get(i).set(j, Math.min(triangle.get(i-1).get(j-1), triangle.get(i-1).get(j))+triangle.get(i).get(j));
}
else {
triangle.get(i).set(j, triangle.get(i-1).get(j-1)+triangle.get(i).get(j));
}
}
}
Collections.sort(triangle.get(n-1));
return triangle.get(n-1).get(0);
}
}