/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* <h2><center>© Copyright (c) 2021 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "delay.h"
#include "bsp_printf.h"
#include "bsp_key.h"
#include "string.h"
#include "bsp_sdram.h"
#include "bsp_malloc.h"
//#include "bsp_sdmmc.h"
#include "ff.h" /* Obtains integer types */
#include "bsp_w25qxx.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
QSPI_HandleTypeDef hqspi;
UART_HandleTypeDef huart1;
SDRAM_HandleTypeDef hsdram1;
/* USER CODE BEGIN PV */
volatile uint8_t rx_done, tx_done;
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_USART1_UART_Init(void);
static void MX_FMC_Init(void);
static void MX_QUADSPI_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
static void Sdram_SendCommand(uint32_t CommandMode, uint32_t CommandTarget, uint32_t AutoRefreshNumber, uint32_t ModeRegisterDefinition)
{
FMC_SDRAM_CommandTypeDef Command;
Command.AutoRefreshNumber = AutoRefreshNumber;
Command.CommandMode = CommandMode;
Command.CommandTarget = CommandTarget;
Command.ModeRegisterDefinition = ModeRegisterDefinition;
HAL_SDRAM_SendCommand(&hsdram1, &Command, 0);
}
static void Sdram_Init_Sequence(void)
{
uint32_t ModeRegisterDefinition;
// uint16_t Mode_WB;
// uint16_t Mode_Op;
// uint16_t Mode_CasLatency;
// uint16_t Mode_Bt;
// uint16_t Mode_BurstLength;
Sdram_SendCommand(FMC_SDRAM_CMD_CLK_ENABLE, FMC_SDRAM_CMD_TARGET_BANK1, 0, 0);
delay_us(200);
Sdram_SendCommand(FMC_SDRAM_CMD_PALL, FMC_SDRAM_CMD_TARGET_BANK1, 0, 0);
Sdram_SendCommand(FMC_SDRAM_CMD_AUTOREFRESH_MODE, FMC_SDRAM_CMD_TARGET_BANK1, 1, 0);
//SDRAM????2?êy
#define SDRAM_MODEREG_BURST_LENGTH_1 ((uint16_t)0x0000)
#define SDRAM_MODEREG_BURST_LENGTH_2 ((uint16_t)0x0001)
#define SDRAM_MODEREG_BURST_LENGTH_4 ((uint16_t)0x0002)
#define SDRAM_MODEREG_BURST_LENGTH_8 ((uint16_t)0x0004)
#define SDRAM_MODEREG_BURST_TYPE_SEQUENTIAL ((uint16_t)0x0000)
#define SDRAM_MODEREG_BURST_TYPE_INTERLEAVED ((uint16_t)0x0008)
#define SDRAM_MODEREG_CAS_LATENCY_2 ((uint16_t)0x0020)
#define SDRAM_MODEREG_CAS_LATENCY_3 ((uint16_t)0x0030)
#define SDRAM_MODEREG_OPERATING_MODE_STANDARD ((uint16_t)0x0000)
#define SDRAM_MODEREG_WRITEBURST_MODE_PROGRAMMED ((uint16_t)0x0000)
#define SDRAM_MODEREG_WRITEBURST_MODE_SINGLE ((uint16_t)0x0200)
ModeRegisterDefinition=(uint32_t)SDRAM_MODEREG_BURST_LENGTH_1 | //éè??í?·¢3¤?è:1(?éò?ê?1/2/4/8)
SDRAM_MODEREG_BURST_TYPE_SEQUENTIAL | //éè??í?·¢ààDí:á?D?(?éò?ê?á?D?/??′í)
SDRAM_MODEREG_CAS_LATENCY_3 | //éè??CAS?μ:3(?éò?ê?2/3)
SDRAM_MODEREG_OPERATING_MODE_STANDARD | //éè??2ù×÷?£ê?:0,±ê×??£ê?
SDRAM_MODEREG_WRITEBURST_MODE_SINGLE; //éè??í?·¢D′?£ê?:1,μ¥μ?·??ê
Sdram_SendCommand(FMC_SDRAM_CMD_LOAD_MODE, FMC_SDRAM_CMD_TARGET_BANK1, 1, ModeRegisterDefinition);
HAL_SDRAM_ProgramRefreshRate(&hsdram1, 824);
}
char QSPIPath[4]; /* QSPI flash logical drive path */
FATFS fs; /* FatFs文件系统对象 */
FIL fnew; /* 文件对象 */
FRESULT res_flash; /* 文件操作结果 */
UINT fnum; /* 文件成功读写数量 */
char fpath[100]; /* 保存当前扫描路径 */
char readbuffer[512]; /* */
/* FatFs多项功能测试 */
DIR dir;
FATFS *pfs;
DWORD fre_clust, fre_sect, tot_sect;
static FRESULT miscellaneous(void)
{
printf("\n*************** 设备信息获取 ***************\r\n");
/* 获取设备信息和空簇大小 */
res_flash = f_getfree("0:", &fre_clust, &pfs);
/* 计算得到总的扇区个数和空扇区个数 */
tot_sect = (pfs->n_fatent - 2) * pfs->csize;
fre_sect = fre_clust * pfs->csize;
/* 打印信息(4096 字节/扇区) */
printf("》设备总空间:%10lu KB。\n》可用空间: %10lu KB。\n", tot_sect /2, fre_sect /2);
printf("\n******** 文件定位和格式化写入功能测试 ********\r\n");
res_flash = f_open(&fnew, "0:FatFs读写测试文件.txt",
FA_OPEN_ALWAYS|FA_WRITE|FA_READ );
if ( res_flash == FR_OK )
{
/* 文件定位 */
res_flash = f_lseek(&fnew,f_size(&fnew));
if (res_flash == FR_OK)
{
/* 格式化写入,参数格式类似printf函数 */
f_printf(&fnew,"\n在原来文件新添加一行内容\n");
f_printf(&fnew,"》设备总空间:%10lu KB。\n》可用空间: %10lu KB。\n", tot_sect /2, fre_sect /2);
/* 文件定位到文件起始位置 */
res_flash = f_lseek(&fnew,0);
/* 读取文件所有内容到缓存区 */
res_flash = f_read(&fnew,readbuffer,f_size(&fnew),&fnum);
if(res_flash == FR_OK)
{
printf("》文件内容:\n%s\n",readbuffer);
}
}
f_close(&fnew);
printf("\n********** 目录创建和重命名功能测试 **********\r\n");
/* 尝试打开目录 */
res_flash=f_opendir(&dir,"0:TestDir");
if(res_flash!=FR_OK)
{
/* 打开目录失败,就创建目录 */
res_flash=f_mkdir("0:TestDir");
}
else
{
/* 如果目录已经存在,关闭它 */
res_flash=f_closedir(&dir);
/* 删除文件 */
f_unlink("0:TestDir/testdir.txt");
}
if(res_flash==FR_OK)
{
/* 重命名并移动文件 */
res_flash=f_rename("0:FatFs读写测试文件.txt","0:TestDir/testdir.txt");
}
}
else
{
printf("!! 打开文件失败:%d\n",res_flash);
printf("!! 或许需要再次运行“FatFs移植与读写测试”工程\n");
}
return res_flash;
}
/**
* 文件信息获取
*/
static FRESULT file_check(void)
{
FILINFO fno;
/* 获取文件信息 */
res_flash=f_stat("0:TestDir/testdir.txt",&fno);
if(res_flash==FR_OK)
{
printf("“testdir.txt”文件信息:\n");
printf("》文件大小: %ld(字节)\n", fno.fsize);
printf("》时间戳: %u/%02u/%02u, %02u:%02u\n",
(fno.fdate >> 9) + 1980, fno.fdate >> 5 & 15, fno.fdate & 31,fno.ftime >> 11, fno.ftime >> 5 & 63);
printf("》属性: %c%c%c%c%c\n\n",
(fno.fattrib & AM_DIR) ? 'D' : '-', // 是一个目录
(fno.fattrib & AM_RDO) ? 'R' : '-', // 只读文件
(fno.fattrib & AM_HID) ? 'H' : '-', // 隐藏文件
(fno.fattrib & AM_SYS) ? 'S' : '-', // 系统文件
(fno.fattrib & AM_ARC) ? 'A' : '-'); // 档案文件
}
return res_flash;
}
/**
* @brief scan_files 递归扫描FatFs内的文件
* @param path:初始扫描路径
* @retval result:文件系统的返回值
*/
static FRESULT scan_files (char* path)
{
FRESULT res; //部分在递归过程被修改的变量,不用全局变量
FILINFO fno;
DIR dir;
int i;
char *fn; // 文件名
#if _USE_LFN
/* 长文件名支持 */
/* 简体中文需要2个字节保存一个“字”*/
static char lfn[_MAX_LFN*2 + 1];
fno.lfname = lfn;
fno.lfsize = sizeof(lfn);
#endif
//打开目录
res = f_opendir(&dir, path);
if (res == FR_OK)
{
i = strlen(path);
for (;;)
{
//读取目录下的内容,再读会自动读下一个文件
res = f_readdir(&dir, &fno);
//为空时表示所有项目读取完毕,跳出
if (res != FR_OK || fno.fname[0] == 0) break;
#if _USE_LFN
fn = *fno.lfname ? fno.lfname : fno.fname;
#else
fn = fno.fname;
#endif
//点表示当前目录,跳过
if (*fn == '.') continue;
//目录,递归读取
if (fno.fattrib & AM_DIR)
{
//合成完整目录名
sprintf(&path[i], "/%s", fn);
//递归遍历
res = scan_files(path);
path[i] = 0;
//打开失败,跳出循环
if (res != FR_OK)
break;
}
else
{
printf("%s/%s\r\n", path, fn); //输出文件名
/* 可以在这里提取特定格式的文件路径 */
}//else
} //for
}
return res;
}
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
// SCB_EnableICache();//使能I-Cache
// SCB_EnableDCache();//使能D-Cache
// SCB->CACR|=1<<2; //强制D-Cache透写,如不开启,实际使用中可能遇到各种问题
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_USART1_UART_Init();
MX_FMC_Init();
MX_QUADSPI_Init();
/* USER CODE BEGIN 2 */
#define DATA_SIZE 10000
#define DATA_ADDR 380
delay_init(216);
delay_ms(5000);
W25QXX_Init();
Sdram_Init_Sequence();
my_mem_init(SRAMIN); //初始化内部内存池
my_mem_init(SRAMEX); //初始化外部SDRAM内存池
uint8_t key;
volatile __align(4) uint8_t buf[512];
uint32_t sd_size;
uint32_t i;
BYTE work[FF_MAX_SS]; /* Work area (larger is better for processing time) */
//在外部SPI Flash挂载文件系统,文件系统挂载时会对SPI设备初始化
res_flash = f_mount(&fs,"0:",1);
if(res_flash == FR_NO_FILESYSTEM)
{
printf("》FLASH还没有文件系统,即将进行格式化...\r\n");
/* 格式化 */
res_flash=f_mkfs("0:",0, work, sizeof work);
if(res_flash == FR_OK)
{
printf("》FLASH已成功格式化文件系统。\r\n");
/* 格式化后,先取消挂载 */
res_flash = f_mount(NULL,"0:",1);
/* 重新挂载 */
res_flash = f_mount(&fs,"0:",1);
}
else
{
printf("《《格式化失败。》》\r\n");
while(1);
}
}
else if(res_flash!=FR_OK)
{
printf("!!外部Flash挂载文件系统失败。(%d)\r\n",res_flash);
printf("!!可能原因:SPI Flash初始化不成功。\r\n");
while(1);
}
else
{
printf("》文件系统挂载成功,可以进行读写测试\r\n");
}
/* FatFs多项功能测试 */
res_flash = miscellaneous();
printf("\n*************** 文件信息获取测试 **************\r\n");
res_flash = file_check();
printf("***************** 文件扫描测试 ****************\r\n");
strcpy(fpath,"0:");
scan_files(fpath);
/* 不再使用文件系统,取消挂载文件系统 */
f_mount(NULL,"0:",1);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
delay_ms(1000);
printf("hello world!\r\n");
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0};
/** Configure LSE Drive Capability
*/
HAL_PWR_EnableBkUpAccess();
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 25;
RCC_OscInitStruct.PLL.PLLN = 432;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 9;
RCC_OscInitStruct.PLL.PLLR = 2;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Activate the Over-Drive mode
*/
if (HAL_PWREx_EnableOverDrive() != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_7) != HAL_OK)
{
Error_Handler();
}
PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_USART1;
PeriphClkInitStruct.Usart1ClockSelection = RCC_USART1CLKSOURCE_PCLK2;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Enables the Clock Security System
*/
HAL_RCC_EnableCSS();
}
/**
* @brief QUADSPI Initialization Function
* @param None
* @retval None
*/
static void MX_QUADSPI_Init(void)
{
/* USER CODE BEGIN QUADSPI_Init 0 */
/* USER CODE END QUADSPI_Init 0 */
/* USER CODE BEGIN QUADSPI_Init 1 */
/* USER CODE END QUADSPI_Init 1 */
/* QUADSPI parameter configuration*/
hqspi.Instance = QUADSPI;
hqspi.Init.ClockPrescaler = 2;
hqspi.Init.FifoThreshold = 4;
hqspi.Init.SampleShifting = QSPI_SAMPLE_SHIFTING_HALFCYCLE;
hqspi.Init.FlashSize = 24;
hqspi.Init.ChipSelectHighTime = QSPI_CS_HIGH_TIME_5_CYCLE;
hqspi.Init.ClockMode = QSPI_CLOCK_MODE_0;
hqspi.Init.FlashID = QSPI_FLASH_ID_1;
hqspi.Init.DualFlash = QSPI_DUALFLASH_DISABLE;
if (HAL_QSPI_Init(&hqspi) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN QUADSPI_Init 2 */
/* USER CODE END QUADSPI_Init 2 */
}
/**
* @brief USART1 Initialization Function
* @param None
* @retval None
*/
static void MX_USART1_UART_Init(void)
{
/* USER CODE BEGIN USART1_Init 0 */
/* USER CODE END USART1_Init 0 */
/* USER CODE BEGIN USART1_Init 1 */
/* USER CODE END USART1_Init 1 */
huart1.Instance = USART1;
huart1.Init.BaudRate = 115200;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
huart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
huart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
if (HAL_UART_Init(&huart1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART1_Init 2 */
/* USER CODE END USART1_Init 2 */
}
/* FMC initialization function */
static void MX_FMC_Init(void)
{
/* USER CODE BEGIN FMC_Init 0 */
/* USER CODE END FMC_Init 0 */
FMC_SDRAM_TimingTypeDef SdramTiming = {0};
/* USER CODE BEGIN FMC_Init 1 */
/* USER CODE END FMC_Init 1 */
/** Perform the SDRAM1 memory initialization sequence
*/
hsdram1.Instance = FMC_SDRAM_DEVICE;
/* hsdram1.Init */
hsdram1.Init.SDBank = FMC_SDRAM_BANK1;
hsdram1.Init.ColumnBitsNumber = FMC_SDRAM_COLUMN_BITS_NUM_9;
hsdram1.Init.RowBitsNumber = FMC_SDRAM_ROW_BITS_NUM_13;
hsdram1.Init.MemoryDataWidth = FMC_SDRAM_MEM_BUS_WIDTH_16;
hsdram1.Init.InternalBankNumber = FMC_SDRAM_INTERN_BANKS_NUM_4;
hsdram1.Init.CASLatency = FMC_SDRAM_CAS_LATENCY_3;
hsdram1.Init.WriteProtection = FMC_SDRAM_WRITE_PROTECTION_DISABLE;
hsdram1.Init.SDClockPeriod = FMC_SDRAM_CLOCK_PERIOD_2;
hsdram1.Init.ReadBurst = FMC_SDRAM_RBURST_ENABLE;
hsdram1.Init.ReadPipeDelay = FMC_SDRAM_RPIPE_DELAY_0;
/* SdramTiming */
SdramTiming.LoadToActiveDelay = 2;
SdramTiming.ExitSelfRefreshDelay = 7;
SdramTiming.SelfRefreshTime = 4;
SdramTiming.RowCycleDelay = 7;
SdramTiming.WriteRecoveryTime = 4;
SdramTiming.RPDelay = 2;
SdramTiming.RCDDelay = 2;
if (HAL_SDRAM_Init(&hsdram1, &SdramTiming) != HAL_OK)
{
Error_Handler( );
}
/* USER CODE BEGIN FMC_Init 2 */
/* USER CODE END FMC_Init 2 */
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOF_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_GPIOG_CLK_ENABLE();
__HAL_RCC_GPIOE_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_5, GPIO_PIN_RESET);
/*Configure GPIO pin : PC13 */
GPIO_InitStruct.Pin = GPIO_PIN_13;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/*Configure GPIO pin : PA0 */
GPIO_InitStruct.Pin = GPIO_PIN_0;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLDOWN;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pins : PH2 PH3 */
GPIO_InitStruct.Pin = GPIO_PIN_2|GPIO_PIN_3;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(GPIOH, &GPIO_InitStruct);
/*Configure GPIO pins : PB0 PB5 */
GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_5;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pin : PB1 */
GPIO_InitStruct.Pin = GPIO_PIN_1;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pin : PD6 */
GPIO_InitStruct.Pin = GPIO_PIN_6;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
#ifndef __BSP_W25QXX_H
#define __BSP_W25QXX_H
#include "main.h"
//W25X系列/Q系列芯片列表
//W25Q80 ID 0XEF13
//W25Q16 ID 0XEF14
//W25Q32 ID 0XEF15
//W25Q64 ID 0XEF16
//W25Q128 ID 0XEF17
//W25Q256 ID 0XEF18
#define W25Q80 0XEF13
#define W25Q16 0XEF14
#define W25Q32 0XEF15
#define W25Q64 0XEF16
#define W25Q128 0XEF17
#define W25Q256 0XEF18
extern uint16_t W25QXX_TYPE; //定义W25QXX芯片型号
//
//指令表
#define W25X_WriteEnable 0x06
#define W25X_WriteDisable 0x04
#define W25X_ReadStatusReg1 0x05
#define W25X_ReadStatusReg2 0x35
#define W25X_ReadStatusReg3 0x15
#define W25X_WriteStatusReg1 0x01
#define W25X_WriteStatusReg2 0x31
#define W25X_WriteStatusReg3 0x11
#define W25X_ReadData 0x03
#define W25X_FastReadData 0x0B
#define W25X_FastReadDual 0x3B
#define W25X_PageProgram 0x02
#define W25X_BlockErase 0xD8
#define W25X_SectorErase 0x20
#define W25X_ChipErase 0xC7
#define W25X_PowerDown 0xB9
#define W25X_ReleasePowerDown 0xAB
#define W25X_DeviceID 0xAB
#define W25X_ManufactDeviceID 0x90
#define W25X_JedecDeviceID 0x9F
#define W25X_Enable4ByteAddr 0xB7
#define W25X_Exit4ByteAddr 0xE9
#define W25X_SetReadParam 0xC0
#define W25X_EnterQPIMode 0x38
#define W25X_ExitQPIMode 0xFF
/**
* @brief HAL Status structures definition
*/
typedef enum
{
Status_Busy = 0x00U,
Status_Free = 0x01U
} Busy_StatusTypeDef;
void QSPI_Send_CMD(uint32_t instruction, uint32_t address, uint32_t dummyCycles, uint32_t instructionMode, uint32_t addressMode, uint32_t addressSize, uint32_t dataMode, uint32_t datalen);
uint8_t QSPI_Receive(uint8_t* buf);
uint8_t QSPI_Transmit(uint8_t* buf);
void W25QXX_Init(void);
void W25QXX_Qspi_Enable(void);
void W25QXX_Qspi_Disable(void);
uint8_t W25QXX_ReadSR(uint8_t regno);
void W25QXX_Write_SR(uint8_t regno, uint8_t sr);
void W25QXX_Write_Enable(void);
void W25QXX_Write_Disable(void);
uint16_t W25QXX_ReadID(void);
void W25QXX_Read(uint8_t* pBuffer,uint32_t ReadAddr,uint16_t NumByteToRead);
void W25QXX_Write_Page(uint8_t* pBuffer,uint32_t WriteAddr,uint16_t NumByteToWrite);
void W25QXX_Write_NoCheck(uint8_t* pBuffer, uint32_t WriteAddr, uint16_t NumByteToWrite);
void W25QXX_Write(uint8_t* pBuffer, uint32_t WriteAddr, uint16_t NumByteToWrite);
void W25QXX_Erase_Chip(void);
void W25QXX_Erase_Sector(uint32_t Dst_Addr);
void W25QXX_Wait_Busy(void);
#endif //__BSP_W25QXX_H
#include "bsp_w25qxx.h"
uint16_t W25QXX_TYPE; //定义W25QXX芯片型号
uint8_t W25QXX_QPI_MODE=0; //QSPI模式标志:0,SPI模式;1,QPI模式.
uint32_t W25QXX_INSTRUCTION_MODE = QSPI_INSTRUCTION_NONE;
uint32_t W25QXX_ADDR_MODE = QSPI_ADDRESS_NONE;
uint32_t W25QXX_DATA_MODE = QSPI_DATA_NONE;
//#define ENABLE_QPI_MODE
//#define ENABLE_4BYTE_ADDR_MODE
//QSPI发送命令
//instruction:要发送的指令
//address:发送到的目的地址
//dummyCycles:空指令周期数
//instructionMode:指令模式;QSPI_INSTRUCTION_NONE,QSPI_INSTRUCTION_1_LINE,QSPI_INSTRUCTION_2_LINE,QSPI_INSTRUCTION_4_LINE
//addressMode:地址模式; QSPI_ADDRESS_NONE,QSPI_ADDRESS_1_LINE,QSPI_ADDRESS_2_LINE,QSPI_ADDRESS_4_LINE
//addressSize:地址长度;QSPI_ADDRESS_8_BITS,QSPI_ADDRESS_16_BITS,QSPI_ADDRESS_24_BITS,QSPI_ADDRESS_32_BITS
//dataMode:数据模式; QSPI_DATA_NONE,QSPI_DATA_1_LINE,QSPI_DATA_2_LINE,QSPI_DATA_4_LINE
//datalen:要传输的数据长度
void QSPI_Send_CMD(uint32_t instruction, uint32_t address, uint32_t dummyCycles, uint32_t instructionMode, uint32_t addressMode, uint32_t addressSize, uint32_t dataMode, uint32_t datalen)
{
QSPI_CommandTypeDef Cmdhandler;
Cmdhandler.Instruction=instruction; //指令
Cmdhandler.Address=address; //地址
Cmdhandler.AlternateBytes = 0;
Cmdhandler.AddressSize=addressSize; //地址长度
Cmdhandler.AlternateBytesSize = 0;
Cmdhandler.DummyCycles=dummyCycles; //设置空指令周期数
Cmdhandler.InstructionMode=instructionMode; //指令模式
Cmdhandler.AddressMode=addressMode; //地址模式
Cmdhandler.AlternateByteMode=QSPI_ALTERNATE_BYTES_NONE; //无交替字节
Cmdhandler.DataMode=dataMode; //数据模式
Cmdhandler.NbData = datalen;
Cmdhandler.DdrMode=QSPI_DDR_MODE_DISABLE; //关闭DDR模式
Cmdhandler.DdrHoldHalfCycle=QSPI_DDR_HHC_ANALOG_DELAY;
Cmdhandler.SIOOMode=QSPI_SIOO_INST_EVERY_CMD; //每次都发送指令
HAL_QSPI_Command(&hqspi,&Cmdhandler,5000);
}
//QSPI接收指定长度的数据
//buf:接收数据缓冲区首地址
//返回值:0,正常
// 其他,错误代码
uint8_t QSPI_Receive(uint8_t* buf)
{
if(HAL_QSPI_Receive(&hqspi, buf, 5000)==HAL_OK) return 0; //接收数据
else return 1;
}
//QSPI发送指定长度的数据
//buf:发送数据缓冲区首地址
//datalen:要传输的数据长度
//返回值:0,正常
// 其他,错误代码
uint8_t QSPI_Transmit(uint8_t* buf)
{
if(HAL_QSPI_Transmit(&hqspi, buf, 5000)==HAL_OK) return 0; //发送数据
else return 1;
}
//初始化SPI FLASH的IO口
void W25QXX_Init(void)
{
uint8_t temp;
#ifdef ENABLE_QPI_MODE
W25QXX_Qspi_Enable(); //使能QSPI模式
// #else
// W25QXX_Qspi_Disable();
#endif
W25QXX_TYPE=W25QXX_ReadID(); //读取FLASH ID.
//printf("ID:%x\r\n",W25QXX_TYPE);
if(W25QXX_TYPE==W25Q256) //SPI FLASH为W25Q256
{
temp=W25QXX_ReadSR(3); //读取状态寄存器3,判断地址模式
#ifdef ENABLE_4BYTE_ADDR_MODE
if((temp&0X01)==0) //如果不是4字节地址模式,则进入4字节地址模式
{
W25QXX_Write_Enable(); //写使能
if(W25QXX_QPI_MODE) QSPI_Send_CMD(W25X_Enable4ByteAddr,0,0,QSPI_INSTRUCTION_4_LINES,QSPI_ADDRESS_NONE,QSPI_ADDRESS_24_BITS,QSPI_DATA_NONE, 0);//QPI,使能4字节地址指令,地址为0,无数据_8位地址_无地址_4线传输指令,无空周期,0个字节数据
else QSPI_Send_CMD(W25X_Enable4ByteAddr,0,0,QSPI_INSTRUCTION_1_LINE,QSPI_ADDRESS_NONE,QSPI_ADDRESS_24_BITS,QSPI_DATA_NONE, 0);
}
W25QXX_ADDR_MODE = QSPI_ADDRESS_32_BITS;
#else
if((temp&0X01)==0x01) //如果是4字节地址模式,则进入3字节地址模式
{
W25QXX_Write_Enable(); //写使能
if(W25QXX_QPI_MODE) QSPI_Send_CMD(W25X_Exit4ByteAddr,0,0,QSPI_INSTRUCTION_4_LINES,QSPI_ADDRESS_NONE,QSPI_ADDRESS_24_BITS,QSPI_DATA_NONE, 0);//QPI,使能4字节地址指令,地址为0,无数据_8位地址_无地址_4线传输指令,无空周期,0个字节数据
else QSPI_Send_CMD(W25X_Exit4ByteAddr,0,0,QSPI_INSTRUCTION_1_LINE,QSPI_ADDRESS_NONE,QSPI_ADDRESS_24_BITS,QSPI_DATA_NONE, 0);
}
W25QXX_ADDR_MODE = QSPI_ADDRESS_24_BITS;
#endif
W25QXX_Write_Enable(); //写使能
if(W25QXX_QPI_MODE) QSPI_Send_CMD(W25X_SetReadParam,0,0,QSPI_INSTRUCTION_4_LINES,QSPI_ADDRESS_NONE,QSPI_ADDRESS_8_BITS,QSPI_DATA_4_LINES, 1); //QPI,设置读参数指令,地址为0,4线传数据_8位地址_无地址_4线传输指令,无空周期,1个字节数据
else QSPI_Send_CMD(W25X_SetReadParam,0,0,QSPI_INSTRUCTION_1_LINE,QSPI_ADDRESS_NONE,QSPI_ADDRESS_8_BITS,QSPI_DATA_1_LINE, 1);
temp=3<<4; //设置P4&P5=11,8个dummy clocks,104M
QSPI_Transmit(&temp); //发送1个字节
}
}
//W25QXX进入QSPI模式
void W25QXX_Qspi_Enable(void)
{
uint8_t stareg2;
stareg2=W25QXX_ReadSR(2); //先读出状态寄存器2的原始值
if((stareg2&0X02)==0) //QE位未使能
{
W25QXX_Write_Enable(); //写使能
stareg2|=1<<1; //使能QE位
W25QXX_Write_SR(2,stareg2); //写状态寄存器2
}
QSPI_Send_CMD(W25X_EnterQPIMode,0,0,QSPI_INSTRUCTION_1_LINE,QSPI_ADDRESS_NONE,QSPI_ADDRESS_24_BITS,QSPI_DATA_NONE, 0);//写command指令,地址为0,无数据_8位地址_无地址_单线传输指令,无空周期,0个字节数据
W25QXX_QPI_MODE=1; //标记QSPI模式
}
//W25QXX退出QSPI模式
void W25QXX_Qspi_Disable(void)
{
uint8_t stareg2;
stareg2=W25QXX_ReadSR(2); //先读出状态寄存器2的原始值
if((stareg2&0X02)!=0) //QE位使能
{
W25QXX_Write_Enable(); //写使能
stareg2&=~(1<<1); //使能QE位
W25QXX_Write_SR(2,stareg2); //写状态寄存器2
}
QSPI_Send_CMD(W25X_ExitQPIMode,0,0,QSPI_INSTRUCTION_4_LINES,QSPI_ADDRESS_NONE,QSPI_ADDRESS_24_BITS,QSPI_DATA_NONE, 0);//写command指令,地址为0,无数据_8位地址_无地址_4线传输指令,无空周期,0个字节数据
W25QXX_QPI_MODE=0; //标记SPI模式
}
//读取W25QXX的状态寄存器,W25QXX一共有3个状态寄存器
//状态寄存器1:
//BIT7 6 5 4 3 2 1 0
//SPR RV TB BP2 BP1 BP0 WEL BUSY
//SPR:默认0,状态寄存器保护位,配合WP使用
//TB,BP2,BP1,BP0:FLASH区域写保护设置
//WEL:写使能锁定
//BUSY:忙标记位(1,忙;0,空闲)
//默认:0x00
//状态寄存器2:
//BIT7 6 5 4 3 2 1 0
//SUS CMP LB3 LB2 LB1 (R) QE SRP1
//状态寄存器3:
//BIT7 6 5 4 3 2 1 0
//HOLD/RST DRV1 DRV0 (R) (R) WPS ADP ADS
//regno:状态寄存器号,范:1~3
//返回值:状态寄存器值
uint8_t W25QXX_ReadSR(uint8_t regno)
{
uint8_t byte=0,command=0;
switch(regno)
{
case 1:
command=W25X_ReadStatusReg1; //读状态寄存器1指令
break;
case 2:
command=W25X_ReadStatusReg2; //读状态寄存器2指令
break;
case 3:
command=W25X_ReadStatusReg3; //读状态寄存器3指令
break;
default:
command=W25X_ReadStatusReg1;
break;
}
if(W25QXX_QPI_MODE)QSPI_Send_CMD(command,0,0,QSPI_INSTRUCTION_4_LINES,QSPI_ADDRESS_NONE,QSPI_ADDRESS_24_BITS,QSPI_DATA_4_LINES, 1); //QPI,写command指令,地址为0,4线传数据_8位地址_无地址_4线传输指令,无空周期,1个字节数据
else QSPI_Send_CMD(command,0,0,QSPI_INSTRUCTION_1_LINE,QSPI_ADDRESS_NONE,QSPI_ADDRESS_24_BITS,QSPI_DATA_1_LINE, 1); //SPI,写command指令,地址为0,单线传数据_8位地址_无地址_单线传输指令,无空周期,1个字节数据
QSPI_Receive(&byte);
return byte;
}
//写W25QXX状态寄存器
void W25QXX_Write_SR(uint8_t regno, uint8_t sr)
{
uint8_t command=0;
switch(regno)
{
case 1:
command=W25X_WriteStatusReg1; //写状态寄存器1指令
break;
case 2:
command=W25X_WriteStatusReg2; //写状态寄存器2指令
break;
case 3:
command=W25X_WriteStatusReg3; //写状态寄存器3指令
break;
default:
command=W25X_WriteStatusReg1;
break;
}
if(W25QXX_QPI_MODE)QSPI_Send_CMD(command,0,0,QSPI_INSTRUCTION_4_LINES,QSPI_ADDRESS_NONE,QSPI_ADDRESS_24_BITS,QSPI_DATA_4_LINES,1); //QPI,写command指令,地址为0,4线传数据_8位地址_无地址_4线传输指令,无空周期,1个字节数据
else QSPI_Send_CMD(command,0,0, QSPI_INSTRUCTION_1_LINE,QSPI_ADDRESS_NONE,QSPI_ADDRESS_24_BITS,QSPI_DATA_1_LINE,1); //SPI,写command指令,地址为0,单线传数据_8位地址_无地址_单线传输指令,无空周期,1个字节数据
QSPI_Transmit(&sr);
}
//W25QXX写使能
//将S1寄存器的WEL置位
void W25QXX_Write_Enable(void)
{
if(W25QXX_QPI_MODE)QSPI_Send_CMD(W25X_WriteEnable,0,0,QSPI_INSTRUCTION_4_LINES,QSPI_ADDRESS_NONE,QSPI_ADDRESS_24_BITS,QSPI_DATA_NONE,0); //QPI,写使能指令,地址为0,无数据_8位地址_无地址_4线传输指令,无空周期,0个字节数据
else QSPI_Send_CMD(W25X_WriteEnable,0,0,QSPI_INSTRUCTION_1_LINE,QSPI_ADDRESS_NONE,QSPI_ADDRESS_24_BITS,QSPI_DATA_NONE,0); //SPI,写使能指令,地址为0,无数据_8位地址_无地址_单线传输指令,无空周期,0个字节数据
}
//W25QXX写禁止
//将WEL清零
void W25QXX_Write_Disable(void)
{
if(W25QXX_QPI_MODE)QSPI_Send_CMD(W25X_WriteDisable,0,0,QSPI_INSTRUCTION_4_LINES,QSPI_ADDRESS_NONE,QSPI_ADDRESS_24_BITS,QSPI_DATA_NONE,0);//QPI,写禁止指令,地址为0,无数据_8位地址_无地址_4线传输指令,无空周期,0个字节数据
else QSPI_Send_CMD(W25X_WriteDisable,0,0,QSPI_INSTRUCTION_1_LINE,QSPI_ADDRESS_NONE,QSPI_ADDRESS_24_BITS,QSPI_DATA_NONE,0); //SPI,写禁止指令,地址为0,无数据_8位地址_无地址_单线传输指令,无空周期,0个字节数据
}
//返回值如下:
//0XEF13,表示芯片型号为W25Q80
//0XEF14,表示芯片型号为W25Q16
//0XEF15,表示芯片型号为W25Q32
//0XEF16,表示芯片型号为W25Q64
//0XEF17,表示芯片型号为W25Q128
//0XEF18,表示芯片型号为W25Q256
uint16_t W25QXX_ReadID(void)
{
uint8_t temp[2];
uint16_t deviceid;
if(W25QXX_QPI_MODE)QSPI_Send_CMD(W25X_ManufactDeviceID,0,0,QSPI_INSTRUCTION_4_LINES,QSPI_ADDRESS_4_LINES,QSPI_ADDRESS_24_BITS,QSPI_DATA_4_LINES,2);//QPI,读id,地址为0,4线传输数据_24位地址_4线传输地址_4线传输指令,无空周期,2个字节数据
else QSPI_Send_CMD(W25X_ManufactDeviceID,0,0,QSPI_INSTRUCTION_1_LINE,QSPI_ADDRESS_1_LINE,QSPI_ADDRESS_24_BITS,QSPI_DATA_1_LINE,2); //SPI,读id,地址为0,单线传输数据_24位地址_单线传输地址_单线传输指令,无空周期,2个字节数据
QSPI_Receive(temp);
deviceid=(temp[0]<<8)|temp[1];
return deviceid;
}
//读取SPI FLASH,仅支持QPI模式
//在指定地址开始读取指定长度的数据
//pBuffer:数据存储区
//ReadAddr:开始读取的地址(最大32bit)
//NumByteToRead:要读取的字节数(最大65535)
void W25QXX_Read(uint8_t* pBuffer,uint32_t ReadAddr,uint16_t NumByteToRead)
{
if(W25QXX_QPI_MODE) QSPI_Send_CMD(W25X_FastReadData,ReadAddr,8,QSPI_INSTRUCTION_4_LINES,QSPI_ADDRESS_4_LINES,/*QSPI_ADDRESS_32_BITS*/W25QXX_ADDR_MODE,QSPI_DATA_4_LINES,NumByteToRead); //QPI,快速读数据,地址为ReadAddr,4线传输数据_32位地址_4线传输地址_4线传输指令,8空周期,NumByteToRead个数据
else QSPI_Send_CMD(W25X_FastReadData,ReadAddr,8,QSPI_INSTRUCTION_1_LINE,QSPI_ADDRESS_1_LINE,/*QSPI_ADDRESS_32_BITS*/W25QXX_ADDR_MODE,QSPI_DATA_1_LINE,NumByteToRead);
QSPI_Receive(pBuffer);
}
//SPI在一页(0~65535)内写入少于256个字节的数据
//在指定地址开始写入最大256字节的数据
//pBuffer:数据存储区
//WriteAddr:开始写入的地址(最大32bit)
//NumByteToWrite:要写入的字节数(最大256),该数不应该超过该页的剩余字节数!!!
void W25QXX_Write_Page(uint8_t* pBuffer,uint32_t WriteAddr,uint16_t NumByteToWrite)
{
W25QXX_Write_Enable(); //写使能
if(W25QXX_QPI_MODE) QSPI_Send_CMD(W25X_PageProgram,WriteAddr,0,QSPI_INSTRUCTION_4_LINES,QSPI_ADDRESS_4_LINES,/*QSPI_ADDRESS_32_BITS*/W25QXX_ADDR_MODE,QSPI_DATA_4_LINES,NumByteToWrite); //QPI,页写指令,地址为WriteAddr,4线传输数据_32位地址_4线传输地址_4线传输指令,无空周期,NumByteToWrite个数据
else QSPI_Send_CMD(W25X_PageProgram,WriteAddr,0,QSPI_INSTRUCTION_1_LINE,QSPI_ADDRESS_1_LINE,/*QSPI_ADDRESS_32_BITS*/W25QXX_ADDR_MODE,QSPI_DATA_1_LINE,NumByteToWrite);
QSPI_Transmit(pBuffer);
W25QXX_Wait_Busy(); //等待写入结束
}
//无检验写SPI FLASH
//必须确保所写的地址范围内的数据全部为0XFF,否则在非0XFF处写入的数据将失败!
//具有自动换页功能
//在指定地址开始写入指定长度的数据,但是要确保地址不越界!
//pBuffer:数据存储区
//WriteAddr:开始写入的地址(最大32bit)
//NumByteToWrite:要写入的字节数(最大65535)
//CHECK OK
void W25QXX_Write_NoCheck(uint8_t* pBuffer, uint32_t WriteAddr, uint16_t NumByteToWrite)
{
uint16_t pageremain;
pageremain=256-WriteAddr%256; //单页剩余的字节数
if(NumByteToWrite<=pageremain)pageremain=NumByteToWrite;//不大于256个字节
while(1)
{
W25QXX_Write_Page(pBuffer,WriteAddr,pageremain);
if(NumByteToWrite==pageremain)break;//写入结束了
else //NumByteToWrite>pageremain
{
pBuffer+=pageremain;
WriteAddr+=pageremain;
NumByteToWrite-=pageremain; //减去已经写入了的字节数
if(NumByteToWrite>256)pageremain=256; //一次可以写入256个字节
else pageremain=NumByteToWrite; //不够256个字节了
}
}
}
//写SPI FLASH
//在指定地址开始写入指定长度的数据
//该函数带擦除操作!
//pBuffer:数据存储区
//WriteAddr:开始写入的地址(最大32bit)
//NumByteToWrite:要写入的字节数(最大65535)
uint8_t W25QXX_BUFFER[4096];
void W25QXX_Write(uint8_t* pBuffer, uint32_t WriteAddr, uint16_t NumByteToWrite)
{
uint32_t secpos;
uint16_t secoff;
uint16_t secremain;
uint16_t i;
uint8_t * W25QXX_BUF;
W25QXX_BUF=W25QXX_BUFFER;
secpos=WriteAddr/4096;//扇区地址
secoff=WriteAddr%4096;//在扇区内的偏移
secremain=4096-secoff;//扇区剩余空间大小
//printf("ad:%X,nb:%X\r\n",WriteAddr,NumByteToWrite);//测试用
if(NumByteToWrite<=secremain)secremain=NumByteToWrite;//不大于4096个字节
while(1)
{
W25QXX_Read(W25QXX_BUF,secpos*4096,4096);//读出整个扇区的内容
for(i=0;i<secremain;i++)//校验数据
{
if(W25QXX_BUF[secoff+i]!=0XFF)break;//需要擦除
}
if(i<secremain)//需要擦除
{
W25QXX_Erase_Sector(secpos);//擦除这个扇区
for(i=0;i<secremain;i++) //复制
{
W25QXX_BUF[i+secoff]=pBuffer[i];
}
W25QXX_Write_NoCheck(W25QXX_BUF,secpos*4096,4096);//写入整个扇区
}else W25QXX_Write_NoCheck(pBuffer,WriteAddr,secremain);//写已经擦除了的,直接写入扇区剩余区间.
if(NumByteToWrite==secremain)break;//写入结束了
else//写入未结束
{
secpos++;//扇区地址增1
secoff=0;//偏移位置为0
pBuffer+=secremain; //指针偏移
WriteAddr+=secremain;//写地址偏移
NumByteToWrite-=secremain; //字节数递减
if(NumByteToWrite>4096)secremain=4096; //下一个扇区还是写不完
else secremain=NumByteToWrite; //下一个扇区可以写完了
}
}
}
//擦除整个芯片
//等待时间超长...
void W25QXX_Erase_Chip(void)
{
W25QXX_Write_Enable(); //SET WEL
W25QXX_Wait_Busy();
if(W25QXX_QPI_MODE) QSPI_Send_CMD(W25X_ChipErase,0,0,QSPI_INSTRUCTION_4_LINES,QSPI_ADDRESS_NONE,QSPI_ADDRESS_8_BITS,QSPI_DATA_NONE,0);//QPI,写全片擦除指令,地址为0,无数据_8位地址_无地址_4线传输指令,无空周期,0个字节数据
else QSPI_Send_CMD(W25X_ChipErase,0,0,QSPI_INSTRUCTION_1_LINE,QSPI_ADDRESS_NONE,QSPI_ADDRESS_8_BITS,QSPI_DATA_NONE,0);
W25QXX_Wait_Busy(); //等待芯片擦除结束
}
//擦除一个扇区
//Dst_Addr:扇区地址 根据实际容量设置
//擦除一个扇区的最少时间:150ms
void W25QXX_Erase_Sector(uint32_t Dst_Addr)
{
//printf("fe:%x\r\n",Dst_Addr); //监视falsh擦除情况,测试用
Dst_Addr*=4096;
W25QXX_Write_Enable(); //SET WEL
W25QXX_Wait_Busy();
if(W25QXX_QPI_MODE) QSPI_Send_CMD(W25X_SectorErase,Dst_Addr,0,QSPI_INSTRUCTION_4_LINES,QSPI_ADDRESS_4_LINES,/*QSPI_ADDRESS_32_BITS*/W25QXX_ADDR_MODE,QSPI_DATA_NONE,0);//QPI,写扇区擦除指令,地址为0,无数据_32位地址_4线传输地址_4线传输指令,无空周期,0个字节数据
else QSPI_Send_CMD(W25X_SectorErase,Dst_Addr,0,QSPI_INSTRUCTION_1_LINE,QSPI_ADDRESS_1_LINE,/*QSPI_ADDRESS_32_BITS*/W25QXX_ADDR_MODE,QSPI_DATA_NONE,0);
W25QXX_Wait_Busy(); //等待擦除完成
}
//等待空闲
void W25QXX_Wait_Busy(void)
{
while((W25QXX_ReadSR(1)&0x01)==0x01); // 等待BUSY位清空
}
/*-----------------------------------------------------------------------*/
/* Low level disk I/O module SKELETON for FatFs (C)ChaN, 2019 */
/*-----------------------------------------------------------------------*/
/* If a working storage control module is available, it should be */
/* attached to the FatFs via a glue function rather than modifying it. */
/* This is an example of glue functions to attach various exsisting */
/* storage control modules to the FatFs module with a defined API. */
/*-----------------------------------------------------------------------*/
#include "diskio.h" /* Declarations of disk functions */
//#include "bsp_sdmmc.h"
#include "bsp_w25qxx.h"
/* Definitions of physical drive number for each drive */
#define DEV_RAM 0 /* Example: Map Ramdisk to physical drive 0 */
#define DEV_MMC 1 /* Example: Map MMC/SD card to physical drive 1 */
#define DEV_USB 2 /* Example: Map USB MSD to physical drive 2 */
//对于W25Q256
//前25M字节给fatfs用,25M字节后,用于存放字库,字库占用6.01M. 剩余部分,给客户自己用
#define FLASH_SECTOR_SIZE 512
#define FLASH_SECTOR_COUNT 1024*25*2 //W25Q256,前25M字节给FATFS占用
#define FLASH_BLOCK_SIZE 8 //每个BLOCK有8个扇区
/*-----------------------------------------------------------------------*/
/* Get Drive Status */
/*-----------------------------------------------------------------------*/
DSTATUS disk_status (
BYTE pdrv /* Physical drive nmuber to identify the drive */
)
{
DSTATUS stat;
int result;
return RES_OK;
// switch (pdrv) {
// case DEV_RAM :
// result = RAM_disk_status();
// // translate the reslut code here
// return stat;
// case DEV_MMC :
// result = MMC_disk_status();
// // translate the reslut code here
// return stat;
// case DEV_USB :
// result = USB_disk_status();
// // translate the reslut code here
// return stat;
// }
// return STA_NOINIT;
}
/*-----------------------------------------------------------------------*/
/* Inidialize a Drive */
/*-----------------------------------------------------------------------*/
DSTATUS disk_initialize (
BYTE pdrv /* Physical drive nmuber to identify the drive */
)
{
DSTATUS stat;
int result;
return RES_OK;
// switch (pdrv) {
// case DEV_RAM :
// result = RAM_disk_initialize();
// // translate the reslut code here
// return stat;
// case DEV_MMC :
// result = MMC_disk_initialize();
// // translate the reslut code here
// return stat;
// case DEV_USB :
// result = USB_disk_initialize();
// // translate the reslut code here
// return stat;
// }
// return STA_NOINIT;
}
/*-----------------------------------------------------------------------*/
/* Read Sector(s) */
/*-----------------------------------------------------------------------*/
DRESULT disk_read (
BYTE pdrv, /* Physical drive nmuber to identify the drive */
BYTE *buff, /* Data buffer to store read data */
LBA_t sector, /* Start sector in LBA */
UINT count /* Number of sectors to read */
)
{
DRESULT res;
int result;
switch (pdrv) {
case 0 :
// translate the arguments here
W25QXX_Read((uint8_t*)buff, sector*FLASH_SECTOR_SIZE, count*FLASH_SECTOR_SIZE);
// translate the reslut code here
return RES_OK;
}
// switch (pdrv) {
// case DEV_RAM :
// // translate the arguments here
// result = RAM_disk_read(buff, sector, count);
// // translate the reslut code here
// return res;
// case DEV_MMC :
// // translate the arguments here
// result = MMC_disk_read(buff, sector, count);
// // translate the reslut code here
// return res;
// case DEV_USB :
// // translate the arguments here
// result = USB_disk_read(buff, sector, count);
// // translate the reslut code here
// return res;
// }
return RES_PARERR;
}
/*-----------------------------------------------------------------------*/
/* Write Sector(s) */
/*-----------------------------------------------------------------------*/
#if FF_FS_READONLY == 0
DRESULT disk_write (
BYTE pdrv, /* Physical drive nmuber to identify the drive */
const BYTE *buff, /* Data to be written */
LBA_t sector, /* Start sector in LBA */
UINT count /* Number of sectors to write */
)
{
DRESULT res;
int result;
switch (pdrv) {
case 0 :
// translate the arguments here
W25QXX_Write((uint8_t*)buff, sector*FLASH_SECTOR_SIZE, count*FLASH_SECTOR_SIZE);
// translate the reslut code here
return RES_OK;
}
// switch (pdrv) {
// case DEV_RAM :
// // translate the arguments here
// result = RAM_disk_write(buff, sector, count);
// // translate the reslut code here
// return res;
// case DEV_MMC :
// // translate the arguments here
// result = MMC_disk_write(buff, sector, count);
// // translate the reslut code here
// return res;
// case DEV_USB :
// // translate the arguments here
// result = USB_disk_write(buff, sector, count);
// // translate the reslut code here
// return res;
// }
return RES_PARERR;
}
#endif
/*-----------------------------------------------------------------------*/
/* Miscellaneous Functions */
/*-----------------------------------------------------------------------*/
DRESULT disk_ioctl (
BYTE pdrv, /* Physical drive nmuber (0..) */
BYTE cmd, /* Control code */
void *buff /* Buffer to send/receive control data */
)
{
DRESULT res;
int result;
switch (pdrv) {
case 0 :
// Process of the command for the RAM drive
switch(cmd)
{
case CTRL_SYNC:
res = RES_OK;
break;
case GET_SECTOR_SIZE:
*(DWORD*)buff = FLASH_SECTOR_SIZE;
res = RES_OK;
break;
case GET_BLOCK_SIZE:
*(WORD*)buff = FLASH_BLOCK_SIZE;
res = RES_OK;
break;
case GET_SECTOR_COUNT:
*(DWORD*)buff = FLASH_SECTOR_COUNT;
res = RES_OK;
break;
default:
res = RES_PARERR;
break;
}
return res;
}
// switch (pdrv) {
// case DEV_RAM :
// // Process of the command for the RAM drive
// return res;
// case DEV_MMC :
// // Process of the command for the MMC/SD card
// return res;
// case DEV_USB :
// // Process of the command the USB drive
// return res;
// }
return RES_PARERR;
}
DWORD get_fattime (void)
{
return 0;
// time_t t;
// struct tm *stm;
// t = time(0);
// stm = localtime(&t);
// return (DWORD)(stm->tm_year - 80) << 25 |
// (DWORD)(stm->tm_mon + 1) << 21 |
// (DWORD)stm->tm_mday << 16 |
// (DWORD)stm->tm_hour << 11 |
// (DWORD)stm->tm_min << 5 |
// (DWORD)stm->tm_sec >> 1;
}
/*------------------------------------------------------------------------*/
/* Sample Code of OS Dependent Functions for FatFs */
/* (C)ChaN, 2018 */
/*------------------------------------------------------------------------*/
#include "ff.h"
#include "bsp_malloc.h"
#if FF_USE_LFN == 3 /* Dynamic memory allocation */
/*------------------------------------------------------------------------*/
/* Allocate a memory block */
/*------------------------------------------------------------------------*/
void* ff_memalloc ( /* Returns pointer to the allocated memory block (null if not enough core) */
UINT msize /* Number of bytes to allocate */
)
{
//return malloc(msize); /* Allocate a new memory block with POSIX API */
return (void*)mymalloc(SRAMIN,msize);
}
/*------------------------------------------------------------------------*/
/* Free a memory block */
/*------------------------------------------------------------------------*/
void ff_memfree (
void* mblock /* Pointer to the memory block to free (nothing to do if null) */
)
{
//free(mblock); /* Free the memory block with POSIX API */
myfree(SRAMIN,mblock);
}
#endif
#if FF_FS_REENTRANT /* Mutal exclusion */
/*------------------------------------------------------------------------*/
/* Create a Synchronization Object */
/*------------------------------------------------------------------------*/
/* This function is called in f_mount() function to create a new
/ synchronization object for the volume, such as semaphore and mutex.
/ When a 0 is returned, the f_mount() function fails with FR_INT_ERR.
*/
//const osMutexDef_t Mutex[FF_VOLUMES]; /* Table of CMSIS-RTOS mutex */
int ff_cre_syncobj ( /* 1:Function succeeded, 0:Could not create the sync object */
BYTE vol, /* Corresponding volume (logical drive number) */
FF_SYNC_t* sobj /* Pointer to return the created sync object */
)
{
/* Win32 */
*sobj = CreateMutex(NULL, FALSE, NULL);
return (int)(*sobj != INVALID_HANDLE_VALUE);
/* uITRON */
// T_CSEM csem = {TA_TPRI,1,1};
// *sobj = acre_sem(&csem);
// return (int)(*sobj > 0);
/* uC/OS-II */
// OS_ERR err;
// *sobj = OSMutexCreate(0, &err);
// return (int)(err == OS_NO_ERR);
/* FreeRTOS */
// *sobj = xSemaphoreCreateMutex();
// return (int)(*sobj != NULL);
/* CMSIS-RTOS */
// *sobj = osMutexCreate(&Mutex[vol]);
// return (int)(*sobj != NULL);
}
/*------------------------------------------------------------------------*/
/* Delete a Synchronization Object */
/*------------------------------------------------------------------------*/
/* This function is called in f_mount() function to delete a synchronization
/ object that created with ff_cre_syncobj() function. When a 0 is returned,
/ the f_mount() function fails with FR_INT_ERR.
*/
int ff_del_syncobj ( /* 1:Function succeeded, 0:Could not delete due to an error */
FF_SYNC_t sobj /* Sync object tied to the logical drive to be deleted */
)
{
/* Win32 */
return (int)CloseHandle(sobj);
/* uITRON */
// return (int)(del_sem(sobj) == E_OK);
/* uC/OS-II */
// OS_ERR err;
// OSMutexDel(sobj, OS_DEL_ALWAYS, &err);
// return (int)(err == OS_NO_ERR);
/* FreeRTOS */
// vSemaphoreDelete(sobj);
// return 1;
/* CMSIS-RTOS */
// return (int)(osMutexDelete(sobj) == osOK);
}
/*------------------------------------------------------------------------*/
/* Request Grant to Access the Volume */
/*------------------------------------------------------------------------*/
/* This function is called on entering file functions to lock the volume.
/ When a 0 is returned, the file function fails with FR_TIMEOUT.
*/
int ff_req_grant ( /* 1:Got a grant to access the volume, 0:Could not get a grant */
FF_SYNC_t sobj /* Sync object to wait */
)
{
/* Win32 */
return (int)(WaitForSingleObject(sobj, FF_FS_TIMEOUT) == WAIT_OBJECT_0);
/* uITRON */
// return (int)(wai_sem(sobj) == E_OK);
/* uC/OS-II */
// OS_ERR err;
// OSMutexPend(sobj, FF_FS_TIMEOUT, &err));
// return (int)(err == OS_NO_ERR);
/* FreeRTOS */
// return (int)(xSemaphoreTake(sobj, FF_FS_TIMEOUT) == pdTRUE);
/* CMSIS-RTOS */
// return (int)(osMutexWait(sobj, FF_FS_TIMEOUT) == osOK);
}
/*------------------------------------------------------------------------*/
/* Release Grant to Access the Volume */
/*------------------------------------------------------------------------*/
/* This function is called on leaving file functions to unlock the volume.
*/
void ff_rel_grant (
FF_SYNC_t sobj /* Sync object to be signaled */
)
{
/* Win32 */
ReleaseMutex(sobj);
/* uITRON */
// sig_sem(sobj);
/* uC/OS-II */
// OSMutexPost(sobj);
/* FreeRTOS */
// xSemaphoreGive(sobj);
/* CMSIS-RTOS */
// osMutexRelease(sobj);
}
#endif
/*---------------------------------------------------------------------------/
/ FatFs Functional Configurations
/---------------------------------------------------------------------------*/
#define FFCONF_DEF 86631 /* Revision ID */
/*---------------------------------------------------------------------------/
/ Function Configurations
/---------------------------------------------------------------------------*/
#define FF_FS_READONLY 0
/* This option switches read-only configuration. (0:Read/Write or 1:Read-only)
/ Read-only configuration removes writing API functions, f_write(), f_sync(),
/ f_unlink(), f_mkdir(), f_chmod(), f_rename(), f_truncate(), f_getfree()
/ and optional writing functions as well. */
#define FF_FS_MINIMIZE 0
/* This option defines minimization level to remove some basic API functions.
/
/ 0: Basic functions are fully enabled.
/ 1: f_stat(), f_getfree(), f_unlink(), f_mkdir(), f_truncate() and f_rename()
/ are removed.
/ 2: f_opendir(), f_readdir() and f_closedir() are removed in addition to 1.
/ 3: f_lseek() function is removed in addition to 2. */
#define FF_USE_FIND 0
/* This option switches filtered directory read functions, f_findfirst() and
/ f_findnext(). (0:Disable, 1:Enable 2:Enable with matching altname[] too) */
#define FF_USE_MKFS 1
/* This option switches f_mkfs() function. (0:Disable or 1:Enable) */
#define FF_USE_FASTSEEK 1
/* This option switches fast seek function. (0:Disable or 1:Enable) */
#define FF_USE_EXPAND 0
/* This option switches f_expand function. (0:Disable or 1:Enable) */
#define FF_USE_CHMOD 0
/* This option switches attribute manipulation functions, f_chmod() and f_utime().
/ (0:Disable or 1:Enable) Also FF_FS_READONLY needs to be 0 to enable this option. */
#define FF_USE_LABEL 0
/* This option switches volume label functions, f_getlabel() and f_setlabel().
/ (0:Disable or 1:Enable) */
#define FF_USE_FORWARD 0
/* This option switches f_forward() function. (0:Disable or 1:Enable) */
#define FF_USE_STRFUNC 1
#define FF_PRINT_LLI 0
#define FF_PRINT_FLOAT 0
#define FF_STRF_ENCODE 0
/* FF_USE_STRFUNC switches string functions, f_gets(), f_putc(), f_puts() and
/ f_printf().
/
/ 0: Disable. FF_PRINT_LLI, FF_PRINT_FLOAT and FF_STRF_ENCODE have no effect.
/ 1: Enable without LF-CRLF conversion.
/ 2: Enable with LF-CRLF conversion.
/
/ FF_PRINT_LLI = 1 makes f_printf() support long long argument and FF_PRINT_FLOAT = 1/2
makes f_printf() support floating point argument. These features want C99 or later.
/ When FF_LFN_UNICODE >= 1 with LFN enabled, string functions convert the character
/ encoding in it. FF_STRF_ENCODE selects assumption of character encoding ON THE FILE
/ to be read/written via those functions.
/
/ 0: ANSI/OEM in current CP
/ 1: Unicode in UTF-16LE
/ 2: Unicode in UTF-16BE
/ 3: Unicode in UTF-8
*/
/*---------------------------------------------------------------------------/
/ Locale and Namespace Configurations
/---------------------------------------------------------------------------*/
#define FF_CODE_PAGE 936
/* This option specifies the OEM code page to be used on the target system.
/ Incorrect code page setting can cause a file open failure.
/
/ 437 - U.S.
/ 720 - Arabic
/ 737 - Greek
/ 771 - KBL
/ 775 - Baltic
/ 850 - Latin 1
/ 852 - Latin 2
/ 855 - Cyrillic
/ 857 - Turkish
/ 860 - Portuguese
/ 861 - Icelandic
/ 862 - Hebrew
/ 863 - Canadian French
/ 864 - Arabic
/ 865 - Nordic
/ 866 - Russian
/ 869 - Greek 2
/ 932 - Japanese (DBCS)
/ 936 - Simplified Chinese (DBCS)
/ 949 - Korean (DBCS)
/ 950 - Traditional Chinese (DBCS)
/ 0 - Include all code pages above and configured by f_setcp()
*/
#define FF_USE_LFN 3
#define FF_MAX_LFN 255
/* The FF_USE_LFN switches the support for LFN (long file name).
/
/ 0: Disable LFN. FF_MAX_LFN has no effect.
/ 1: Enable LFN with static working buffer on the BSS. Always NOT thread-safe.
/ 2: Enable LFN with dynamic working buffer on the STACK.
/ 3: Enable LFN with dynamic working buffer on the HEAP.
/
/ To enable the LFN, ffunicode.c needs to be added to the project. The LFN function
/ requiers certain internal working buffer occupies (FF_MAX_LFN + 1) * 2 bytes and
/ additional (FF_MAX_LFN + 44) / 15 * 32 bytes when exFAT is enabled.
/ The FF_MAX_LFN defines size of the working buffer in UTF-16 code unit and it can
/ be in range of 12 to 255. It is recommended to be set it 255 to fully support LFN
/ specification.
/ When use stack for the working buffer, take care on stack overflow. When use heap
/ memory for the working buffer, memory management functions, ff_memalloc() and
/ ff_memfree() exemplified in ffsystem.c, need to be added to the project. */
#define FF_LFN_UNICODE 0
/* This option switches the character encoding on the API when LFN is enabled.
/
/ 0: ANSI/OEM in current CP (TCHAR = char)
/ 1: Unicode in UTF-16 (TCHAR = WCHAR)
/ 2: Unicode in UTF-8 (TCHAR = char)
/ 3: Unicode in UTF-32 (TCHAR = DWORD)
/
/ Also behavior of string I/O functions will be affected by this option.
/ When LFN is not enabled, this option has no effect. */
#define FF_LFN_BUF 255
#define FF_SFN_BUF 12
/* This set of options defines size of file name members in the FILINFO structure
/ which is used to read out directory items. These values should be suffcient for
/ the file names to read. The maximum possible length of the read file name depends
/ on character encoding. When LFN is not enabled, these options have no effect. */
#define FF_FS_RPATH 0
/* This option configures support for relative path.
/
/ 0: Disable relative path and remove related functions.
/ 1: Enable relative path. f_chdir() and f_chdrive() are available.
/ 2: f_getcwd() function is available in addition to 1.
*/
/*---------------------------------------------------------------------------/
/ Drive/Volume Configurations
/---------------------------------------------------------------------------*/
#define FF_VOLUMES 1
/* Number of volumes (logical drives) to be used. (1-10) */
#define FF_STR_VOLUME_ID 0
#define FF_VOLUME_STRS "RAM","NAND","CF","SD","SD2","USB","USB2","USB3"
/* FF_STR_VOLUME_ID switches support for volume ID in arbitrary strings.
/ When FF_STR_VOLUME_ID is set to 1 or 2, arbitrary strings can be used as drive
/ number in the path name. FF_VOLUME_STRS defines the volume ID strings for each
/ logical drives. Number of items must not be less than FF_VOLUMES. Valid
/ characters for the volume ID strings are A-Z, a-z and 0-9, however, they are
/ compared in case-insensitive. If FF_STR_VOLUME_ID >= 1 and FF_VOLUME_STRS is
/ not defined, a user defined volume string table needs to be defined as:
/
/ const char* VolumeStr[FF_VOLUMES] = {"ram","flash","sd","usb",...
*/
#define FF_MULTI_PARTITION 0
/* This option switches support for multiple volumes on the physical drive.
/ By default (0), each logical drive number is bound to the same physical drive
/ number and only an FAT volume found on the physical drive will be mounted.
/ When this function is enabled (1), each logical drive number can be bound to
/ arbitrary physical drive and partition listed in the VolToPart[]. Also f_fdisk()
/ funciton will be available. */
#define FF_MIN_SS 512
#define FF_MAX_SS 512
/* This set of options configures the range of sector size to be supported. (512,
/ 1024, 2048 or 4096) Always set both 512 for most systems, generic memory card and
/ harddisk, but a larger value may be required for on-board flash memory and some
/ type of optical media. When FF_MAX_SS is larger than FF_MIN_SS, FatFs is configured
/ for variable sector size mode and disk_ioctl() function needs to implement
/ GET_SECTOR_SIZE command. */
#define FF_LBA64 0
/* This option switches support for 64-bit LBA. (0:Disable or 1:Enable)
/ To enable the 64-bit LBA, also exFAT needs to be enabled. (FF_FS_EXFAT == 1) */
#define FF_MIN_GPT 0x10000000
/* Minimum number of sectors to switch GPT as partitioning format in f_mkfs and
/ f_fdisk function. 0x100000000 max. This option has no effect when FF_LBA64 == 0. */
#define FF_USE_TRIM 0
/* This option switches support for ATA-TRIM. (0:Disable or 1:Enable)
/ To enable Trim function, also CTRL_TRIM command should be implemented to the
/ disk_ioctl() function. */
/*---------------------------------------------------------------------------/
/ System Configurations
/---------------------------------------------------------------------------*/
#define FF_FS_TINY 0
/* This option switches tiny buffer configuration. (0:Normal or 1:Tiny)
/ At the tiny configuration, size of file object (FIL) is shrinked FF_MAX_SS bytes.
/ Instead of private sector buffer eliminated from the file object, common sector
/ buffer in the filesystem object (FATFS) is used for the file data transfer. */
#define FF_FS_EXFAT 0
/* This option switches support for exFAT filesystem. (0:Disable or 1:Enable)
/ To enable exFAT, also LFN needs to be enabled. (FF_USE_LFN >= 1)
/ Note that enabling exFAT discards ANSI C (C89) compatibility. */
#define FF_FS_NORTC 0
#define FF_NORTC_MON 1
#define FF_NORTC_MDAY 1
#define FF_NORTC_YEAR 2020
/* The option FF_FS_NORTC switches timestamp functiton. If the system does not have
/ any RTC function or valid timestamp is not needed, set FF_FS_NORTC = 1 to disable
/ the timestamp function. Every object modified by FatFs will have a fixed timestamp
/ defined by FF_NORTC_MON, FF_NORTC_MDAY and FF_NORTC_YEAR in local time.
/ To enable timestamp function (FF_FS_NORTC = 0), get_fattime() function need to be
/ added to the project to read current time form real-time clock. FF_NORTC_MON,
/ FF_NORTC_MDAY and FF_NORTC_YEAR have no effect.
/ These options have no effect in read-only configuration (FF_FS_READONLY = 1). */
#define FF_FS_NOFSINFO 0
/* If you need to know correct free space on the FAT32 volume, set bit 0 of this
/ option, and f_getfree() function at first time after volume mount will force
/ a full FAT scan. Bit 1 controls the use of last allocated cluster number.
/
/ bit0=0: Use free cluster count in the FSINFO if available.
/ bit0=1: Do not trust free cluster count in the FSINFO.
/ bit1=0: Use last allocated cluster number in the FSINFO if available.
/ bit1=1: Do not trust last allocated cluster number in the FSINFO.
*/
#define FF_FS_LOCK 0
/* The option FF_FS_LOCK switches file lock function to control duplicated file open
/ and illegal operation to open objects. This option must be 0 when FF_FS_READONLY
/ is 1.
/
/ 0: Disable file lock function. To avoid volume corruption, application program
/ should avoid illegal open, remove and rename to the open objects.
/ >0: Enable file lock function. The value defines how many files/sub-directories
/ can be opened simultaneously under file lock control. Note that the file
/ lock control is independent of re-entrancy. */
/* #include <somertos.h> // O/S definitions */
#define FF_FS_REENTRANT 0
#define FF_FS_TIMEOUT 1000
#define FF_SYNC_t HANDLE
/* The option FF_FS_REENTRANT switches the re-entrancy (thread safe) of the FatFs
/ module itself. Note that regardless of this option, file access to different
/ volume is always re-entrant and volume control functions, f_mount(), f_mkfs()
/ and f_fdisk() function, are always not re-entrant. Only file/directory access
/ to the same volume is under control of this function.
/
/ 0: Disable re-entrancy. FF_FS_TIMEOUT and FF_SYNC_t have no effect.
/ 1: Enable re-entrancy. Also user provided synchronization handlers,
/ ff_req_grant(), ff_rel_grant(), ff_del_syncobj() and ff_cre_syncobj()
/ function, must be added to the project. Samples are available in
/ option/syscall.c.
/
/ The FF_FS_TIMEOUT defines timeout period in unit of time tick.
/ The FF_SYNC_t defines O/S dependent sync object type. e.g. HANDLE, ID, OS_EVENT*,
/ SemaphoreHandle_t and etc. A header file for O/S definitions needs to be
/ included somewhere in the scope of ff.h. */
/*--- End of configuration options ---*/
总结:
1、
2、