/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* <h2><center>© Copyright (c) 2021 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "delay.h"
#include "bsp_printf.h"
#include "bsp_key.h"
#include "string.h"
#include "bsp_sdram.h"
#include "bsp_malloc.h"
#include "bsp_sdmmc.h"
#include "ff.h" /* Obtains integer types */
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
SD_HandleTypeDef hsd1;
UART_HandleTypeDef huart1;
SDRAM_HandleTypeDef hsdram1;
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_USART1_UART_Init(void);
static void MX_SDMMC1_SD_Init(void);
static void MX_FMC_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
//通过串口打印SD卡相关信息
void show_sdcard_info(void)
{
HAL_SD_CardCIDTypeDef cid;
switch(hsd1.SdCard.CardVersion)
{
case CARD_V1_X:printf("Card Version:CARD_V1_X\r\n");break;
case CARD_V2_X:printf("Card Version:CARD_V2_X\r\n");break;
}
switch(hsd1.SdCard.CardType)
{
case CARD_SDSC:printf("Card Type:CARD_SDSC\r\n");break;
case CARD_SDHC_SDXC:printf("Card Type:CARD_SDHC_SDXC\r\n");break;
case CARD_SECURED:printf("Card Type:CARD_SECURED\r\n");break;
}
if(HAL_OK != HAL_SD_GetCardCID(&hsd1, &cid))
{
Error_Handler();
}
printf("Card ManufacturerID:%d\r\n",cid.ManufacturerID); //制造商ID
printf("Card RCA:%d\r\n",hsd1.SdCard.RelCardAdd ); //卡相对地址
printf("Card Capacity:%d MB\r\n",(uint32_t)(((uint64_t)hsd1.SdCard.BlockNbr*hsd1.SdCard.BlockSize)>>20)); //显示容量
printf("Card BlockSize:%d\r\n\r\n",hsd1.SdCard.BlockSize); //显示块大小
printf("Card LogBlockNbr:%d\r\n\r\n",hsd1.SdCard.LogBlockNbr);
printf("Card LogBlockSize:%d\r\n\r\n",hsd1.SdCard.LogBlockSize);
}
static void Sdram_SendCommand(uint32_t CommandMode, uint32_t CommandTarget, uint32_t AutoRefreshNumber, uint32_t ModeRegisterDefinition)
{
FMC_SDRAM_CommandTypeDef Command;
Command.AutoRefreshNumber = AutoRefreshNumber;
Command.CommandMode = CommandMode;
Command.CommandTarget = CommandTarget;
Command.ModeRegisterDefinition = ModeRegisterDefinition;
HAL_SDRAM_SendCommand(&hsdram1, &Command, 0);
}
static void Sdram_Init_Sequence(void)
{
uint32_t ModeRegisterDefinition;
// uint16_t Mode_WB;
// uint16_t Mode_Op;
// uint16_t Mode_CasLatency;
// uint16_t Mode_Bt;
// uint16_t Mode_BurstLength;
Sdram_SendCommand(FMC_SDRAM_CMD_CLK_ENABLE, FMC_SDRAM_CMD_TARGET_BANK1, 0, 0);
delay_us(200);
Sdram_SendCommand(FMC_SDRAM_CMD_PALL, FMC_SDRAM_CMD_TARGET_BANK1, 0, 0);
Sdram_SendCommand(FMC_SDRAM_CMD_AUTOREFRESH_MODE, FMC_SDRAM_CMD_TARGET_BANK1, 1, 0);
//SDRAM????2?êy
#define SDRAM_MODEREG_BURST_LENGTH_1 ((uint16_t)0x0000)
#define SDRAM_MODEREG_BURST_LENGTH_2 ((uint16_t)0x0001)
#define SDRAM_MODEREG_BURST_LENGTH_4 ((uint16_t)0x0002)
#define SDRAM_MODEREG_BURST_LENGTH_8 ((uint16_t)0x0004)
#define SDRAM_MODEREG_BURST_TYPE_SEQUENTIAL ((uint16_t)0x0000)
#define SDRAM_MODEREG_BURST_TYPE_INTERLEAVED ((uint16_t)0x0008)
#define SDRAM_MODEREG_CAS_LATENCY_2 ((uint16_t)0x0020)
#define SDRAM_MODEREG_CAS_LATENCY_3 ((uint16_t)0x0030)
#define SDRAM_MODEREG_OPERATING_MODE_STANDARD ((uint16_t)0x0000)
#define SDRAM_MODEREG_WRITEBURST_MODE_PROGRAMMED ((uint16_t)0x0000)
#define SDRAM_MODEREG_WRITEBURST_MODE_SINGLE ((uint16_t)0x0200)
ModeRegisterDefinition=(uint32_t)SDRAM_MODEREG_BURST_LENGTH_1 | //éè??í?·¢3¤?è:1(?éò?ê?1/2/4/8)
SDRAM_MODEREG_BURST_TYPE_SEQUENTIAL | //éè??í?·¢ààDí:á?D?(?éò?ê?á?D?/??′í)
SDRAM_MODEREG_CAS_LATENCY_3 | //éè??CAS?μ:3(?éò?ê?2/3)
SDRAM_MODEREG_OPERATING_MODE_STANDARD | //éè??2ù×÷?£ê?:0,±ê×??£ê?
SDRAM_MODEREG_WRITEBURST_MODE_SINGLE; //éè??í?·¢D′?£ê?:1,μ¥μ?·??ê
Sdram_SendCommand(FMC_SDRAM_CMD_LOAD_MODE, FMC_SDRAM_CMD_TARGET_BANK1, 1, ModeRegisterDefinition);
HAL_SDRAM_ProgramRefreshRate(&hsdram1, 824);
}
char QSPIPath[4]; /* QSPI flash logical drive path */
FATFS fs; /* FatFs文件系统对象 */
FIL fnew; /* 文件对象 */
FRESULT res_flash; /* 文件操作结果 */
UINT fnum; /* 文件成功读写数量 */
char fpath[100]; /* 保存当前扫描路径 */
char readbuffer[512]; /* */
/* FatFs多项功能测试 */
DIR dir;
FATFS *pfs;
DWORD fre_clust, fre_sect, tot_sect;
static FRESULT miscellaneous(void)
{
printf("\n*************** 设备信息获取 ***************\r\n");
/* 获取设备信息和空簇大小 */
res_flash = f_getfree("0:", &fre_clust, &pfs);
/* 计算得到总的扇区个数和空扇区个数 */
tot_sect = (pfs->n_fatent - 2) * pfs->csize;
fre_sect = fre_clust * pfs->csize;
/* 打印信息(4096 字节/扇区) */
printf("》设备总空间:%10lu KB。\n》可用空间: %10lu KB。\n", tot_sect /2, fre_sect /2);
printf("\n******** 文件定位和格式化写入功能测试 ********\r\n");
res_flash = f_open(&fnew, "0:FatFs读写测试文件.txt",
FA_OPEN_ALWAYS|FA_WRITE|FA_READ );
if ( res_flash == FR_OK )
{
/* 文件定位 */
res_flash = f_lseek(&fnew,f_size(&fnew));
if (res_flash == FR_OK)
{
/* 格式化写入,参数格式类似printf函数 */
f_printf(&fnew,"\n在原来文件新添加一行内容\n");
f_printf(&fnew,"》设备总空间:%10lu KB。\n》可用空间: %10lu KB。\n", tot_sect /2, fre_sect /2);
/* 文件定位到文件起始位置 */
res_flash = f_lseek(&fnew,0);
/* 读取文件所有内容到缓存区 */
res_flash = f_read(&fnew,readbuffer,f_size(&fnew),&fnum);
if(res_flash == FR_OK)
{
printf("》文件内容:\n%s\n",readbuffer);
}
}
f_close(&fnew);
printf("\n********** 目录创建和重命名功能测试 **********\r\n");
/* 尝试打开目录 */
res_flash=f_opendir(&dir,"0:TestDir");
if(res_flash!=FR_OK)
{
/* 打开目录失败,就创建目录 */
res_flash=f_mkdir("0:TestDir");
}
else
{
/* 如果目录已经存在,关闭它 */
res_flash=f_closedir(&dir);
/* 删除文件 */
f_unlink("0:TestDir/testdir.txt");
}
if(res_flash==FR_OK)
{
/* 重命名并移动文件 */
res_flash=f_rename("0:FatFs读写测试文件.txt","0:TestDir/testdir.txt");
}
}
else
{
printf("!! 打开文件失败:%d\n",res_flash);
printf("!! 或许需要再次运行“FatFs移植与读写测试”工程\n");
}
return res_flash;
}
/**
* 文件信息获取
*/
static FRESULT file_check(void)
{
FILINFO fno;
/* 获取文件信息 */
res_flash=f_stat("0:TestDir/testdir.txt",&fno);
if(res_flash==FR_OK)
{
printf("“testdir.txt”文件信息:\n");
printf("》文件大小: %ld(字节)\n", fno.fsize);
printf("》时间戳: %u/%02u/%02u, %02u:%02u\n",
(fno.fdate >> 9) + 1980, fno.fdate >> 5 & 15, fno.fdate & 31,fno.ftime >> 11, fno.ftime >> 5 & 63);
printf("》属性: %c%c%c%c%c\n\n",
(fno.fattrib & AM_DIR) ? 'D' : '-', // 是一个目录
(fno.fattrib & AM_RDO) ? 'R' : '-', // 只读文件
(fno.fattrib & AM_HID) ? 'H' : '-', // 隐藏文件
(fno.fattrib & AM_SYS) ? 'S' : '-', // 系统文件
(fno.fattrib & AM_ARC) ? 'A' : '-'); // 档案文件
}
return res_flash;
}
/**
* @brief scan_files 递归扫描FatFs内的文件
* @param path:初始扫描路径
* @retval result:文件系统的返回值
*/
static FRESULT scan_files (char* path)
{
FRESULT res; //部分在递归过程被修改的变量,不用全局变量
FILINFO fno;
DIR dir;
int i;
char *fn; // 文件名
#if _USE_LFN
/* 长文件名支持 */
/* 简体中文需要2个字节保存一个“字”*/
static char lfn[_MAX_LFN*2 + 1];
fno.lfname = lfn;
fno.lfsize = sizeof(lfn);
#endif
//打开目录
res = f_opendir(&dir, path);
if (res == FR_OK)
{
i = strlen(path);
for (;;)
{
//读取目录下的内容,再读会自动读下一个文件
res = f_readdir(&dir, &fno);
//为空时表示所有项目读取完毕,跳出
if (res != FR_OK || fno.fname[0] == 0) break;
#if _USE_LFN
fn = *fno.lfname ? fno.lfname : fno.fname;
#else
fn = fno.fname;
#endif
//点表示当前目录,跳过
if (*fn == '.') continue;
//目录,递归读取
if (fno.fattrib & AM_DIR)
{
//合成完整目录名
sprintf(&path[i], "/%s", fn);
//递归遍历
res = scan_files(path);
path[i] = 0;
//打开失败,跳出循环
if (res != FR_OK)
break;
}
else
{
printf("%s/%s\r\n", path, fn); //输出文件名
/* 可以在这里提取特定格式的文件路径 */
}//else
} //for
}
return res;
}
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
SCB_EnableICache();//使能I-Cache
SCB_EnableDCache();//使能D-Cache
SCB->CACR|=1<<2; //强制D-Cache透写,如不开启,实际使用中可能遇到各种问题
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_USART1_UART_Init();
MX_SDMMC1_SD_Init();
MX_FMC_Init();
/* USER CODE BEGIN 2 */
delay_init(216);
delay_ms(5000);
Sdram_Init_Sequence();
my_mem_init(SRAMIN); //初始化内部内存池
my_mem_init(SRAMEX); //初始化外部SDRAM内存池
uint8_t key;
uint8_t *buf;
uint32_t sd_size;
uint32_t i;
show_sdcard_info(); //打印SD卡相关信息
BYTE work[FF_MAX_SS]; /* Work area (larger is better for processing time) */
//在外部SPI Flash挂载文件系统,文件系统挂载时会对SPI设备初始化
res_flash = f_mount(&fs,"0:",1);
if(res_flash == FR_NO_FILESYSTEM)
{
printf("》FLASH还没有文件系统,即将进行格式化...\r\n");
/* 格式化 */
res_flash=f_mkfs("0:",0, work, sizeof work);
if(res_flash == FR_OK)
{
printf("》FLASH已成功格式化文件系统。\r\n");
/* 格式化后,先取消挂载 */
res_flash = f_mount(NULL,"0:",1);
/* 重新挂载 */
res_flash = f_mount(&fs,"0:",1);
}
else
{
printf("《《格式化失败。》》\r\n");
while(1);
}
}
else if(res_flash!=FR_OK)
{
printf("!!外部Flash挂载文件系统失败。(%d)\r\n",res_flash);
printf("!!可能原因:SPI Flash初始化不成功。\r\n");
while(1);
}
else
{
printf("》文件系统挂载成功,可以进行读写测试\r\n");
}
/* FatFs多项功能测试 */
res_flash = miscellaneous();
printf("\n*************** 文件信息获取测试 **************\r\n");
res_flash = file_check();
printf("***************** 文件扫描测试 ****************\r\n");
strcpy(fpath,"0:");
scan_files(fpath);
/* 不再使用文件系统,取消挂载文件系统 */
f_mount(NULL,"0:",1);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
delay_ms(1000);
printf("hello world!\r\n");
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0};
/** Configure LSE Drive Capability
*/
HAL_PWR_EnableBkUpAccess();
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 25;
RCC_OscInitStruct.PLL.PLLN = 432;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 9;
RCC_OscInitStruct.PLL.PLLR = 2;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Activate the Over-Drive mode
*/
if (HAL_PWREx_EnableOverDrive() != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_7) != HAL_OK)
{
Error_Handler();
}
PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_USART1|RCC_PERIPHCLK_SDMMC1
|RCC_PERIPHCLK_CLK48;
PeriphClkInitStruct.Usart1ClockSelection = RCC_USART1CLKSOURCE_PCLK2;
PeriphClkInitStruct.Clk48ClockSelection = RCC_CLK48SOURCE_PLL;
PeriphClkInitStruct.Sdmmc1ClockSelection = RCC_SDMMC1CLKSOURCE_CLK48;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Enables the Clock Security System
*/
HAL_RCC_EnableCSS();
}
/**
* @brief SDMMC1 Initialization Function
* @param None
* @retval None
*/
static void MX_SDMMC1_SD_Init(void)
{
/* USER CODE BEGIN SDMMC1_Init 0 */
/* USER CODE END SDMMC1_Init 0 */
/* USER CODE BEGIN SDMMC1_Init 1 */
/* USER CODE END SDMMC1_Init 1 */
hsd1.Instance = SDMMC1;
hsd1.Init.ClockEdge = SDMMC_CLOCK_EDGE_RISING;
hsd1.Init.ClockBypass = SDMMC_CLOCK_BYPASS_DISABLE;
hsd1.Init.ClockPowerSave = SDMMC_CLOCK_POWER_SAVE_DISABLE;
hsd1.Init.BusWide = SDMMC_BUS_WIDE_1B;
hsd1.Init.HardwareFlowControl = SDMMC_HARDWARE_FLOW_CONTROL_DISABLE;
hsd1.Init.ClockDiv = 0;
if (HAL_SD_Init(&hsd1) != HAL_OK)
{
Error_Handler();
}
if (HAL_SD_ConfigWideBusOperation(&hsd1, SDMMC_BUS_WIDE_4B) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN SDMMC1_Init 2 */
/* USER CODE END SDMMC1_Init 2 */
}
/**
* @brief USART1 Initialization Function
* @param None
* @retval None
*/
static void MX_USART1_UART_Init(void)
{
/* USER CODE BEGIN USART1_Init 0 */
/* USER CODE END USART1_Init 0 */
/* USER CODE BEGIN USART1_Init 1 */
/* USER CODE END USART1_Init 1 */
huart1.Instance = USART1;
huart1.Init.BaudRate = 115200;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
huart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
huart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
if (HAL_UART_Init(&huart1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART1_Init 2 */
/* USER CODE END USART1_Init 2 */
}
/* FMC initialization function */
static void MX_FMC_Init(void)
{
/* USER CODE BEGIN FMC_Init 0 */
/* USER CODE END FMC_Init 0 */
FMC_SDRAM_TimingTypeDef SdramTiming = {0};
/* USER CODE BEGIN FMC_Init 1 */
/* USER CODE END FMC_Init 1 */
/** Perform the SDRAM1 memory initialization sequence
*/
hsdram1.Instance = FMC_SDRAM_DEVICE;
/* hsdram1.Init */
hsdram1.Init.SDBank = FMC_SDRAM_BANK1;
hsdram1.Init.ColumnBitsNumber = FMC_SDRAM_COLUMN_BITS_NUM_9;
hsdram1.Init.RowBitsNumber = FMC_SDRAM_ROW_BITS_NUM_13;
hsdram1.Init.MemoryDataWidth = FMC_SDRAM_MEM_BUS_WIDTH_16;
hsdram1.Init.InternalBankNumber = FMC_SDRAM_INTERN_BANKS_NUM_4;
hsdram1.Init.CASLatency = FMC_SDRAM_CAS_LATENCY_3;
hsdram1.Init.WriteProtection = FMC_SDRAM_WRITE_PROTECTION_DISABLE;
hsdram1.Init.SDClockPeriod = FMC_SDRAM_CLOCK_PERIOD_2;
hsdram1.Init.ReadBurst = FMC_SDRAM_RBURST_ENABLE;
hsdram1.Init.ReadPipeDelay = FMC_SDRAM_RPIPE_DELAY_0;
/* SdramTiming */
SdramTiming.LoadToActiveDelay = 2;
SdramTiming.ExitSelfRefreshDelay = 7;
SdramTiming.SelfRefreshTime = 4;
SdramTiming.RowCycleDelay = 7;
SdramTiming.WriteRecoveryTime = 4;
SdramTiming.RPDelay = 2;
SdramTiming.RCDDelay = 2;
if (HAL_SDRAM_Init(&hsdram1, &SdramTiming) != HAL_OK)
{
Error_Handler( );
}
/* USER CODE BEGIN FMC_Init 2 */
/* USER CODE END FMC_Init 2 */
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOF_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_GPIOG_CLK_ENABLE();
__HAL_RCC_GPIOE_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_5, GPIO_PIN_RESET);
/*Configure GPIO pin : PC13 */
GPIO_InitStruct.Pin = GPIO_PIN_13;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/*Configure GPIO pin : PA0 */
GPIO_InitStruct.Pin = GPIO_PIN_0;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLDOWN;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pins : PH2 PH3 */
GPIO_InitStruct.Pin = GPIO_PIN_2|GPIO_PIN_3;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(GPIOH, &GPIO_InitStruct);
/*Configure GPIO pins : PB0 PB5 */
GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_5;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pin : PB1 */
GPIO_InitStruct.Pin = GPIO_PIN_1;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pin : PD6 */
GPIO_InitStruct.Pin = GPIO_PIN_6;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
#ifndef __BSP_SDMMC_H
#define __BSP_SDMMC_H
#ifdef __cplusplus
extern "C" {
#endif
#include "main.h"
uint8_t SD_ReadDisk(uint8_t* buf,uint32_t sector,uint8_t cnt);
uint8_t SD_WriteDisk(uint8_t *buf,uint32_t sector,uint8_t cnt);
#ifdef __cplusplus
}
#endif
#endif /* __BSP_SDMMC_H */
#include "bsp_sdmmc.h"
#include <string.h>
#include "delay.h"
//SD_ReadDisk/SD_WriteDisk函数专用buf,当这两个函数的数据缓存区地址不是4字节对齐的时候,
//需要用到该数组,确保数据缓存区地址是4字节对齐的.
__align(4) uint8_t SDIO_DATA_BUFFER[512];
//关闭所有中断(但是不包括fault和NMI中断)
//__asm void INTX_DISABLE(void)
//{
// CPSID I
// BX LR
//}
//开启所有中断
//__asm void INTX_ENABLE(void)
//{
// CPSIE I
// BX LR
//}
//读SD卡
//buf:读数据缓存区
//sector:扇区地址
//cnt:扇区个数
//返回值:错误状态;0,正常;其他,错误代码;
uint8_t SD_ReadDisk(uint8_t* buf,uint32_t sector,uint8_t cnt)
{
uint8_t sta=HAL_OK;
//long long lsector=sector;
uint8_t n;
//lsector<<=9;
//__disable_irq();//关闭总中断(POLLING模式,严禁中断打断SDIO读写操作!!!)
__set_PRIMASK(0);
//INTX_DISABLE();
if((uint32_t)buf%4!=0)
{
for(n=0;n<cnt;n++)
{
sta=HAL_SD_ReadBlocks(&hsd1,SDIO_DATA_BUFFER,sector+n,1, 5000);//单个sector的读操作
memcpy(buf,SDIO_DATA_BUFFER,BLOCKSIZE);
buf+=512;
}
}else
{
sta=HAL_SD_ReadBlocks(&hsd1,buf,sector,cnt, 5000*cnt);//单个sector的读操作
}
while(1)
{
if(4 == HAL_SD_GetCardState(&hsd1))
{
break;
}
delay_us(100);
}
//__enable_irq();//开启总中断
__set_PRIMASK(1);
//INTX_ENABLE();
return sta;
}
//写SD卡
//buf:写数据缓存区
//sector:扇区地址
//cnt:扇区个数
//返回值:错误状态;0,正常;其他,错误代码;
uint8_t SD_WriteDisk(uint8_t *buf,uint32_t sector,uint8_t cnt)
{
uint8_t sta=HAL_OK;
//long long lsector=sector;
uint8_t n;
//lsector<<=9;
__disable_irq();//关闭总中断(POLLING模式,严禁中断打断SDIO读写操作!!!)
//__set_PRIMASK(0);
//INTX_DISABLE();
if((uint32_t)buf%4!=0)
{
for(n=0;n<cnt;n++)
{
memcpy(SDIO_DATA_BUFFER,buf,BLOCKSIZE);
sta=HAL_SD_WriteBlocks(&hsd1, SDIO_DATA_BUFFER, sector+n, 1, 5000);//单个sector的写操作
buf+=BLOCKSIZE;
}
}else
{
sta=HAL_SD_WriteBlocks(&hsd1, buf, sector, cnt, 5000*cnt);//多个sector的写操作
}
while(1)
{
if(4 == HAL_SD_GetCardState(&hsd1))
{
break;
}
delay_us(100);
}
__enable_irq();//开启总中断
//__set_PRIMASK(1);
//INTX_ENABLE();
return sta;
}
/*-----------------------------------------------------------------------*/
/* Low level disk I/O module SKELETON for FatFs (C)ChaN, 2019 */
/*-----------------------------------------------------------------------*/
/* If a working storage control module is available, it should be */
/* attached to the FatFs via a glue function rather than modifying it. */
/* This is an example of glue functions to attach various exsisting */
/* storage control modules to the FatFs module with a defined API. */
/*-----------------------------------------------------------------------*/
#include "diskio.h" /* Declarations of disk functions */
#include "bsp_sdmmc.h"
/* Definitions of physical drive number for each drive */
#define DEV_RAM 0 /* Example: Map Ramdisk to physical drive 0 */
#define DEV_MMC 1 /* Example: Map MMC/SD card to physical drive 1 */
#define DEV_USB 2 /* Example: Map USB MSD to physical drive 2 */
/*-----------------------------------------------------------------------*/
/* Get Drive Status */
/*-----------------------------------------------------------------------*/
DSTATUS disk_status (
BYTE pdrv /* Physical drive nmuber to identify the drive */
)
{
DSTATUS stat;
int result;
return RES_OK;
// switch (pdrv) {
// case DEV_RAM :
// result = RAM_disk_status();
// // translate the reslut code here
// return stat;
// case DEV_MMC :
// result = MMC_disk_status();
// // translate the reslut code here
// return stat;
// case DEV_USB :
// result = USB_disk_status();
// // translate the reslut code here
// return stat;
// }
// return STA_NOINIT;
}
/*-----------------------------------------------------------------------*/
/* Inidialize a Drive */
/*-----------------------------------------------------------------------*/
DSTATUS disk_initialize (
BYTE pdrv /* Physical drive nmuber to identify the drive */
)
{
DSTATUS stat;
int result;
return RES_OK;
// switch (pdrv) {
// case DEV_RAM :
// result = RAM_disk_initialize();
// // translate the reslut code here
// return stat;
// case DEV_MMC :
// result = MMC_disk_initialize();
// // translate the reslut code here
// return stat;
// case DEV_USB :
// result = USB_disk_initialize();
// // translate the reslut code here
// return stat;
// }
// return STA_NOINIT;
}
/*-----------------------------------------------------------------------*/
/* Read Sector(s) */
/*-----------------------------------------------------------------------*/
DRESULT disk_read (
BYTE pdrv, /* Physical drive nmuber to identify the drive */
BYTE *buff, /* Data buffer to store read data */
LBA_t sector, /* Start sector in LBA */
UINT count /* Number of sectors to read */
)
{
DRESULT res;
int result;
switch (pdrv) {
case 0 :
// translate the arguments here
res = SD_ReadDisk(buff, sector, count);
// translate the reslut code here
return res;
}
// switch (pdrv) {
// case DEV_RAM :
// // translate the arguments here
// result = RAM_disk_read(buff, sector, count);
// // translate the reslut code here
// return res;
// case DEV_MMC :
// // translate the arguments here
// result = MMC_disk_read(buff, sector, count);
// // translate the reslut code here
// return res;
// case DEV_USB :
// // translate the arguments here
// result = USB_disk_read(buff, sector, count);
// // translate the reslut code here
// return res;
// }
return RES_PARERR;
}
/*-----------------------------------------------------------------------*/
/* Write Sector(s) */
/*-----------------------------------------------------------------------*/
#if FF_FS_READONLY == 0
DRESULT disk_write (
BYTE pdrv, /* Physical drive nmuber to identify the drive */
const BYTE *buff, /* Data to be written */
LBA_t sector, /* Start sector in LBA */
UINT count /* Number of sectors to write */
)
{
DRESULT res;
int result;
switch (pdrv) {
case 0 :
// translate the arguments here
res = SD_WriteDisk((uint8_t *)buff, sector, count);
// translate the reslut code here
return res;
}
// switch (pdrv) {
// case DEV_RAM :
// // translate the arguments here
// result = RAM_disk_write(buff, sector, count);
// // translate the reslut code here
// return res;
// case DEV_MMC :
// // translate the arguments here
// result = MMC_disk_write(buff, sector, count);
// // translate the reslut code here
// return res;
// case DEV_USB :
// // translate the arguments here
// result = USB_disk_write(buff, sector, count);
// // translate the reslut code here
// return res;
// }
return RES_PARERR;
}
#endif
/*-----------------------------------------------------------------------*/
/* Miscellaneous Functions */
/*-----------------------------------------------------------------------*/
DRESULT disk_ioctl (
BYTE pdrv, /* Physical drive nmuber (0..) */
BYTE cmd, /* Control code */
void *buff /* Buffer to send/receive control data */
)
{
DRESULT res;
int result;
switch (pdrv) {
case 0 :
// Process of the command for the RAM drive
switch(cmd)
{
case CTRL_SYNC:
res = RES_OK;
break;
case GET_SECTOR_SIZE:
*(DWORD*)buff = 512;
res = RES_OK;
break;
case GET_BLOCK_SIZE:
*(WORD*)buff = hsd1.SdCard.BlockSize;
res = RES_OK;
break;
case GET_SECTOR_COUNT:
*(DWORD*)buff = ((uint64_t)hsd1.SdCard.BlockNbr*hsd1.SdCard.BlockSize) / 512;
res = RES_OK;
break;
default:
res = RES_PARERR;
break;
}
return res;
}
// switch (pdrv) {
// case DEV_RAM :
// // Process of the command for the RAM drive
// return res;
// case DEV_MMC :
// // Process of the command for the MMC/SD card
// return res;
// case DEV_USB :
// // Process of the command the USB drive
// return res;
// }
return RES_PARERR;
}
/*----------------------------------------------------------------------------/
/ FatFs - Generic FAT Filesystem module R0.14b /
/-----------------------------------------------------------------------------/
/
/ Copyright (C) 2021, ChaN, all right reserved.
/
/ FatFs module is an open source software. Redistribution and use of FatFs in
/ source and binary forms, with or without modification, are permitted provided
/ that the following condition is met:
/ 1. Redistributions of source code must retain the above copyright notice,
/ this condition and the following disclaimer.
/
/ This software is provided by the copyright holder and contributors "AS IS"
/ and any warranties related to this software are DISCLAIMED.
/ The copyright owner or contributors be NOT LIABLE for any damages caused
/ by use of this software.
/
/----------------------------------------------------------------------------*/
#ifndef FF_DEFINED
#define FF_DEFINED 86631 /* Revision ID */
#ifdef __cplusplus
extern "C" {
#endif
#include "ffconf.h" /* FatFs configuration options */
#if FF_DEFINED != FFCONF_DEF
#error Wrong configuration file (ffconf.h).
#endif
/* Integer types used for FatFs API */
#if defined(_WIN32) /* Windows VC++ (for development only) */
#define FF_INTDEF 2
#include <windows.h>
typedef unsigned __int64 QWORD;
#include <float.h>
#define isnan(v) _isnan(v)
#define isinf(v) (!_finite(v))
#elif (defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L) || defined(__cplusplus) /* C99 or later */
#define FF_INTDEF 2
#include <stdint.h>
typedef unsigned int UINT; /* int must be 16-bit or 32-bit */
typedef unsigned char BYTE; /* char must be 8-bit */
typedef uint16_t WORD; /* 16-bit unsigned integer */
typedef uint32_t DWORD; /* 32-bit unsigned integer */
typedef uint64_t QWORD; /* 64-bit unsigned integer */
typedef WORD WCHAR; /* UTF-16 character type */
#else /* Earlier than C99 */
#define FF_INTDEF 1
typedef unsigned int UINT; /* int must be 16-bit or 32-bit */
typedef unsigned char BYTE; /* char must be 8-bit */
typedef unsigned short WORD; /* 16-bit unsigned integer */
typedef unsigned long DWORD; /* 32-bit unsigned integer */
typedef WORD WCHAR; /* UTF-16 character type */
#endif
/* Type of file size and LBA variables */
#if FF_FS_EXFAT
#if FF_INTDEF != 2
#error exFAT feature wants C99 or later
#endif
typedef QWORD FSIZE_t;
#if FF_LBA64
typedef QWORD LBA_t;
#else
typedef DWORD LBA_t;
#endif
#else
#if FF_LBA64
#error exFAT needs to be enabled when enable 64-bit LBA
#endif
typedef DWORD FSIZE_t;
typedef DWORD LBA_t;
#endif
/* Type of path name strings on FatFs API (TCHAR) */
#if FF_USE_LFN && FF_LFN_UNICODE == 1 /* Unicode in UTF-16 encoding */
typedef WCHAR TCHAR;
#define _T(x) L ## x
#define _TEXT(x) L ## x
#elif FF_USE_LFN && FF_LFN_UNICODE == 2 /* Unicode in UTF-8 encoding */
typedef char TCHAR;
#define _T(x) u8 ## x
#define _TEXT(x) u8 ## x
#elif FF_USE_LFN && FF_LFN_UNICODE == 3 /* Unicode in UTF-32 encoding */
typedef DWORD TCHAR;
#define _T(x) U ## x
#define _TEXT(x) U ## x
#elif FF_USE_LFN && (FF_LFN_UNICODE < 0 || FF_LFN_UNICODE > 3)
#error Wrong FF_LFN_UNICODE setting
#else /* ANSI/OEM code in SBCS/DBCS */
typedef char TCHAR;
#define _T(x) x
#define _TEXT(x) x
#endif
/* Definitions of volume management */
#if FF_MULTI_PARTITION /* Multiple partition configuration */
typedef struct {
BYTE pd; /* Physical drive number */
BYTE pt; /* Partition: 0:Auto detect, 1-4:Forced partition) */
} PARTITION;
extern PARTITION VolToPart[]; /* Volume - Partition mapping table */
#endif
#if FF_STR_VOLUME_ID
#ifndef FF_VOLUME_STRS
extern const char* VolumeStr[FF_VOLUMES]; /* User defied volume ID */
#endif
#endif
/* Filesystem object structure (FATFS) */
typedef struct {
BYTE fs_type; /* Filesystem type (0:not mounted) */
BYTE pdrv; /* Associated physical drive */
BYTE n_fats; /* Number of FATs (1 or 2) */
BYTE wflag; /* win[] flag (b0:dirty) */
BYTE fsi_flag; /* FSINFO flags (b7:disabled, b0:dirty) */
WORD id; /* Volume mount ID */
WORD n_rootdir; /* Number of root directory entries (FAT12/16) */
WORD csize; /* Cluster size [sectors] */
#if FF_MAX_SS != FF_MIN_SS
WORD ssize; /* Sector size (512, 1024, 2048 or 4096) */
#endif
#if FF_USE_LFN
WCHAR* lfnbuf; /* LFN working buffer */
#endif
#if FF_FS_EXFAT
BYTE* dirbuf; /* Directory entry block scratchpad buffer for exFAT */
#endif
#if FF_FS_REENTRANT
FF_SYNC_t sobj; /* Identifier of sync object */
#endif
#if !FF_FS_READONLY
DWORD last_clst; /* Last allocated cluster */
DWORD free_clst; /* Number of free clusters */
#endif
#if FF_FS_RPATH
DWORD cdir; /* Current directory start cluster (0:root) */
#if FF_FS_EXFAT
DWORD cdc_scl; /* Containing directory start cluster (invalid when cdir is 0) */
DWORD cdc_size; /* b31-b8:Size of containing directory, b7-b0: Chain status */
DWORD cdc_ofs; /* Offset in the containing directory (invalid when cdir is 0) */
#endif
#endif
DWORD n_fatent; /* Number of FAT entries (number of clusters + 2) */
DWORD fsize; /* Size of an FAT [sectors] */
LBA_t volbase; /* Volume base sector */
LBA_t fatbase; /* FAT base sector */
LBA_t dirbase; /* Root directory base sector/cluster */
LBA_t database; /* Data base sector */
#if FF_FS_EXFAT
LBA_t bitbase; /* Allocation bitmap base sector */
#endif
LBA_t winsect; /* Current sector appearing in the win[] */
BYTE win[FF_MAX_SS]; /* Disk access window for Directory, FAT (and file data at tiny cfg) */
} FATFS;
/* Object ID and allocation information (FFOBJID) */
typedef struct {
FATFS* fs; /* Pointer to the hosting volume of this object */
WORD id; /* Hosting volume mount ID */
BYTE attr; /* Object attribute */
BYTE stat; /* Object chain status (b1-0: =0:not contiguous, =2:contiguous, =3:fragmented in this session, b2:sub-directory stretched) */
DWORD sclust; /* Object data start cluster (0:no cluster or root directory) */
FSIZE_t objsize; /* Object size (valid when sclust != 0) */
#if FF_FS_EXFAT
DWORD n_cont; /* Size of first fragment - 1 (valid when stat == 3) */
DWORD n_frag; /* Size of last fragment needs to be written to FAT (valid when not zero) */
DWORD c_scl; /* Containing directory start cluster (valid when sclust != 0) */
DWORD c_size; /* b31-b8:Size of containing directory, b7-b0: Chain status (valid when c_scl != 0) */
DWORD c_ofs; /* Offset in the containing directory (valid when file object and sclust != 0) */
#endif
#if FF_FS_LOCK
UINT lockid; /* File lock ID origin from 1 (index of file semaphore table Files[]) */
#endif
} FFOBJID;
/* File object structure (FIL) */
typedef struct {
FFOBJID obj; /* Object identifier (must be the 1st member to detect invalid object pointer) */
BYTE flag; /* File status flags */
BYTE err; /* Abort flag (error code) */
FSIZE_t fptr; /* File read/write pointer (Zeroed on file open) */
DWORD clust; /* Current cluster of fpter (invalid when fptr is 0) */
LBA_t sect; /* Sector number appearing in buf[] (0:invalid) */
#if !FF_FS_READONLY
LBA_t dir_sect; /* Sector number containing the directory entry (not used at exFAT) */
BYTE* dir_ptr; /* Pointer to the directory entry in the win[] (not used at exFAT) */
#endif
#if FF_USE_FASTSEEK
DWORD* cltbl; /* Pointer to the cluster link map table (nulled on open, set by application) */
#endif
#if !FF_FS_TINY
BYTE buf[FF_MAX_SS]; /* File private data read/write window */
#endif
} FIL;
/* Directory object structure (DIR) */
typedef struct {
FFOBJID obj; /* Object identifier */
DWORD dptr; /* Current read/write offset */
DWORD clust; /* Current cluster */
LBA_t sect; /* Current sector (0:Read operation has terminated) */
BYTE* dir; /* Pointer to the directory item in the win[] */
BYTE fn[12]; /* SFN (in/out) {body[8],ext[3],status[1]} */
#if FF_USE_LFN
DWORD blk_ofs; /* Offset of current entry block being processed (0xFFFFFFFF:Invalid) */
#endif
#if FF_USE_FIND
const TCHAR* pat; /* Pointer to the name matching pattern */
#endif
} DIR;
/* File information structure (FILINFO) */
typedef struct {
FSIZE_t fsize; /* File size */
WORD fdate; /* Modified date */
WORD ftime; /* Modified time */
BYTE fattrib; /* File attribute */
#if FF_USE_LFN
TCHAR altname[FF_SFN_BUF + 1];/* Altenative file name */
TCHAR fname[FF_LFN_BUF + 1]; /* Primary file name */
#else
TCHAR fname[12 + 1]; /* File name */
#endif
} FILINFO;
/* Format parameter structure (MKFS_PARM) */
typedef struct {
BYTE fmt; /* Format option (FM_FAT, FM_FAT32, FM_EXFAT and FM_SFD) */
BYTE n_fat; /* Number of FATs */
UINT align; /* Data area alignment (sector) */
UINT n_root; /* Number of root directory entries */
DWORD au_size; /* Cluster size (byte) */
} MKFS_PARM;
/* File function return code (FRESULT) */
typedef enum {
FR_OK = 0, /* (0) Succeeded */
FR_DISK_ERR, /* (1) A hard error occurred in the low level disk I/O layer */
FR_INT_ERR, /* (2) Assertion failed */
FR_NOT_READY, /* (3) The physical drive cannot work */
FR_NO_FILE, /* (4) Could not find the file */
FR_NO_PATH, /* (5) Could not find the path */
FR_INVALID_NAME, /* (6) The path name format is invalid */
FR_DENIED, /* (7) Access denied due to prohibited access or directory full */
FR_EXIST, /* (8) Access denied due to prohibited access */
FR_INVALID_OBJECT, /* (9) The file/directory object is invalid */
FR_WRITE_PROTECTED, /* (10) The physical drive is write protected */
FR_INVALID_DRIVE, /* (11) The logical drive number is invalid */
FR_NOT_ENABLED, /* (12) The volume has no work area */
FR_NO_FILESYSTEM, /* (13) There is no valid FAT volume */
FR_MKFS_ABORTED, /* (14) The f_mkfs() aborted due to any problem */
FR_TIMEOUT, /* (15) Could not get a grant to access the volume within defined period */
FR_LOCKED, /* (16) The operation is rejected according to the file sharing policy */
FR_NOT_ENOUGH_CORE, /* (17) LFN working buffer could not be allocated */
FR_TOO_MANY_OPEN_FILES, /* (18) Number of open files > FF_FS_LOCK */
FR_INVALID_PARAMETER /* (19) Given parameter is invalid */
} FRESULT;
/*--------------------------------------------------------------*/
/* FatFs module application interface */
FRESULT f_open (FIL* fp, const TCHAR* path, BYTE mode); /* Open or create a file */
FRESULT f_close (FIL* fp); /* Close an open file object */
FRESULT f_read (FIL* fp, void* buff, UINT btr, UINT* br); /* Read data from the file */
FRESULT f_write (FIL* fp, const void* buff, UINT btw, UINT* bw); /* Write data to the file */
FRESULT f_lseek (FIL* fp, FSIZE_t ofs); /* Move file pointer of the file object */
FRESULT f_truncate (FIL* fp); /* Truncate the file */
FRESULT f_sync (FIL* fp); /* Flush cached data of the writing file */
FRESULT f_opendir (DIR* dp, const TCHAR* path); /* Open a directory */
FRESULT f_closedir (DIR* dp); /* Close an open directory */
FRESULT f_readdir (DIR* dp, FILINFO* fno); /* Read a directory item */
FRESULT f_findfirst (DIR* dp, FILINFO* fno, const TCHAR* path, const TCHAR* pattern); /* Find first file */
FRESULT f_findnext (DIR* dp, FILINFO* fno); /* Find next file */
FRESULT f_mkdir (const TCHAR* path); /* Create a sub directory */
FRESULT f_unlink (const TCHAR* path); /* Delete an existing file or directory */
FRESULT f_rename (const TCHAR* path_old, const TCHAR* path_new); /* Rename/Move a file or directory */
FRESULT f_stat (const TCHAR* path, FILINFO* fno); /* Get file status */
FRESULT f_chmod (const TCHAR* path, BYTE attr, BYTE mask); /* Change attribute of a file/dir */
FRESULT f_utime (const TCHAR* path, const FILINFO* fno); /* Change timestamp of a file/dir */
FRESULT f_chdir (const TCHAR* path); /* Change current directory */
FRESULT f_chdrive (const TCHAR* path); /* Change current drive */
FRESULT f_getcwd (TCHAR* buff, UINT len); /* Get current directory */
FRESULT f_getfree (const TCHAR* path, DWORD* nclst, FATFS** fatfs); /* Get number of free clusters on the drive */
FRESULT f_getlabel (const TCHAR* path, TCHAR* label, DWORD* vsn); /* Get volume label */
FRESULT f_setlabel (const TCHAR* label); /* Set volume label */
FRESULT f_forward (FIL* fp, UINT(*func)(const BYTE*,UINT), UINT btf, UINT* bf); /* Forward data to the stream */
FRESULT f_expand (FIL* fp, FSIZE_t fsz, BYTE opt); /* Allocate a contiguous block to the file */
FRESULT f_mount (FATFS* fs, const TCHAR* path, BYTE opt); /* Mount/Unmount a logical drive */
FRESULT f_mkfs (const TCHAR* path, const MKFS_PARM* opt, void* work, UINT len); /* Create a FAT volume */
FRESULT f_fdisk (BYTE pdrv, const LBA_t ptbl[], void* work); /* Divide a physical drive into some partitions */
FRESULT f_setcp (WORD cp); /* Set current code page */
int f_putc (TCHAR c, FIL* fp); /* Put a character to the file */
int f_puts (const TCHAR* str, FIL* cp); /* Put a string to the file */
int f_printf (FIL* fp, const TCHAR* str, ...); /* Put a formatted string to the file */
TCHAR* f_gets (TCHAR* buff, int len, FIL* fp); /* Get a string from the file */
#define f_eof(fp) ((int)((fp)->fptr == (fp)->obj.objsize))
#define f_error(fp) ((fp)->err)
#define f_tell(fp) ((fp)->fptr)
#define f_size(fp) ((fp)->obj.objsize)
#define f_rewind(fp) f_lseek((fp), 0)
#define f_rewinddir(dp) f_readdir((dp), 0)
#define f_rmdir(path) f_unlink(path)
#define f_unmount(path) f_mount(0, path, 0)
/*--------------------------------------------------------------*/
/* Additional user defined functions */
/* RTC function */
#if !FF_FS_READONLY && !FF_FS_NORTC
DWORD get_fattime (void);
#endif
/* LFN support functions */
#if FF_USE_LFN >= 1 /* Code conversion (defined in unicode.c) */
WCHAR ff_oem2uni (WCHAR oem, WORD cp); /* OEM code to Unicode conversion */
WCHAR ff_uni2oem (DWORD uni, WORD cp); /* Unicode to OEM code conversion */
DWORD ff_wtoupper (DWORD uni); /* Unicode upper-case conversion */
#endif
#if FF_USE_LFN == 3 /* Dynamic memory allocation */
void* ff_memalloc (UINT msize); /* Allocate memory block */
void ff_memfree (void* mblock); /* Free memory block */
#endif
/* Sync functions */
#if FF_FS_REENTRANT
int ff_cre_syncobj (BYTE vol, FF_SYNC_t* sobj); /* Create a sync object */
int ff_req_grant (FF_SYNC_t sobj); /* Lock sync object */
void ff_rel_grant (FF_SYNC_t sobj); /* Unlock sync object */
int ff_del_syncobj (FF_SYNC_t sobj); /* Delete a sync object */
#endif
/*--------------------------------------------------------------*/
/* Flags and offset address */
/* File access mode and open method flags (3rd argument of f_open) */
#define FA_READ 0x01
#define FA_WRITE 0x02
#define FA_OPEN_EXISTING 0x00
#define FA_CREATE_NEW 0x04
#define FA_CREATE_ALWAYS 0x08
#define FA_OPEN_ALWAYS 0x10
#define FA_OPEN_APPEND 0x30
/* Fast seek controls (2nd argument of f_lseek) */
#define CREATE_LINKMAP ((FSIZE_t)0 - 1)
/* Format options (2nd argument of f_mkfs) */
#define FM_FAT 0x01
#define FM_FAT32 0x02
#define FM_EXFAT 0x04
#define FM_ANY 0x07
#define FM_SFD 0x08
/* Filesystem type (FATFS.fs_type) */
#define FS_FAT12 1
#define FS_FAT16 2
#define FS_FAT32 3
#define FS_EXFAT 4
/* File attribute bits for directory entry (FILINFO.fattrib) */
#define AM_RDO 0x01 /* Read only */
#define AM_HID 0x02 /* Hidden */
#define AM_SYS 0x04 /* System */
#define AM_DIR 0x10 /* Directory */
#define AM_ARC 0x20 /* Archive */
#ifdef __cplusplus
}
#endif
#endif /* FF_DEFINED */
/*---------------------------------------------------------------------------/
/ FatFs Functional Configurations
/---------------------------------------------------------------------------*/
#define FFCONF_DEF 86631 /* Revision ID */
/*---------------------------------------------------------------------------/
/ Function Configurations
/---------------------------------------------------------------------------*/
#define FF_FS_READONLY 0
/* This option switches read-only configuration. (0:Read/Write or 1:Read-only)
/ Read-only configuration removes writing API functions, f_write(), f_sync(),
/ f_unlink(), f_mkdir(), f_chmod(), f_rename(), f_truncate(), f_getfree()
/ and optional writing functions as well. */
#define FF_FS_MINIMIZE 0
/* This option defines minimization level to remove some basic API functions.
/
/ 0: Basic functions are fully enabled.
/ 1: f_stat(), f_getfree(), f_unlink(), f_mkdir(), f_truncate() and f_rename()
/ are removed.
/ 2: f_opendir(), f_readdir() and f_closedir() are removed in addition to 1.
/ 3: f_lseek() function is removed in addition to 2. */
#define FF_USE_FIND 0
/* This option switches filtered directory read functions, f_findfirst() and
/ f_findnext(). (0:Disable, 1:Enable 2:Enable with matching altname[] too) */
#define FF_USE_MKFS 1
/* This option switches f_mkfs() function. (0:Disable or 1:Enable) */
#define FF_USE_FASTSEEK 1
/* This option switches fast seek function. (0:Disable or 1:Enable) */
#define FF_USE_EXPAND 0
/* This option switches f_expand function. (0:Disable or 1:Enable) */
#define FF_USE_CHMOD 0
/* This option switches attribute manipulation functions, f_chmod() and f_utime().
/ (0:Disable or 1:Enable) Also FF_FS_READONLY needs to be 0 to enable this option. */
#define FF_USE_LABEL 0
/* This option switches volume label functions, f_getlabel() and f_setlabel().
/ (0:Disable or 1:Enable) */
#define FF_USE_FORWARD 0
/* This option switches f_forward() function. (0:Disable or 1:Enable) */
#define FF_USE_STRFUNC 1
#define FF_PRINT_LLI 0
#define FF_PRINT_FLOAT 0
#define FF_STRF_ENCODE 0
/* FF_USE_STRFUNC switches string functions, f_gets(), f_putc(), f_puts() and
/ f_printf().
/
/ 0: Disable. FF_PRINT_LLI, FF_PRINT_FLOAT and FF_STRF_ENCODE have no effect.
/ 1: Enable without LF-CRLF conversion.
/ 2: Enable with LF-CRLF conversion.
/
/ FF_PRINT_LLI = 1 makes f_printf() support long long argument and FF_PRINT_FLOAT = 1/2
makes f_printf() support floating point argument. These features want C99 or later.
/ When FF_LFN_UNICODE >= 1 with LFN enabled, string functions convert the character
/ encoding in it. FF_STRF_ENCODE selects assumption of character encoding ON THE FILE
/ to be read/written via those functions.
/
/ 0: ANSI/OEM in current CP
/ 1: Unicode in UTF-16LE
/ 2: Unicode in UTF-16BE
/ 3: Unicode in UTF-8
*/
/*---------------------------------------------------------------------------/
/ Locale and Namespace Configurations
/---------------------------------------------------------------------------*/
#define FF_CODE_PAGE 936
/* This option specifies the OEM code page to be used on the target system.
/ Incorrect code page setting can cause a file open failure.
/
/ 437 - U.S.
/ 720 - Arabic
/ 737 - Greek
/ 771 - KBL
/ 775 - Baltic
/ 850 - Latin 1
/ 852 - Latin 2
/ 855 - Cyrillic
/ 857 - Turkish
/ 860 - Portuguese
/ 861 - Icelandic
/ 862 - Hebrew
/ 863 - Canadian French
/ 864 - Arabic
/ 865 - Nordic
/ 866 - Russian
/ 869 - Greek 2
/ 932 - Japanese (DBCS)
/ 936 - Simplified Chinese (DBCS)
/ 949 - Korean (DBCS)
/ 950 - Traditional Chinese (DBCS)
/ 0 - Include all code pages above and configured by f_setcp()
*/
#define FF_USE_LFN 3
#define FF_MAX_LFN 255
/* The FF_USE_LFN switches the support for LFN (long file name).
/
/ 0: Disable LFN. FF_MAX_LFN has no effect.
/ 1: Enable LFN with static working buffer on the BSS. Always NOT thread-safe.
/ 2: Enable LFN with dynamic working buffer on the STACK.
/ 3: Enable LFN with dynamic working buffer on the HEAP.
/
/ To enable the LFN, ffunicode.c needs to be added to the project. The LFN function
/ requiers certain internal working buffer occupies (FF_MAX_LFN + 1) * 2 bytes and
/ additional (FF_MAX_LFN + 44) / 15 * 32 bytes when exFAT is enabled.
/ The FF_MAX_LFN defines size of the working buffer in UTF-16 code unit and it can
/ be in range of 12 to 255. It is recommended to be set it 255 to fully support LFN
/ specification.
/ When use stack for the working buffer, take care on stack overflow. When use heap
/ memory for the working buffer, memory management functions, ff_memalloc() and
/ ff_memfree() exemplified in ffsystem.c, need to be added to the project. */
#define FF_LFN_UNICODE 0
/* This option switches the character encoding on the API when LFN is enabled.
/
/ 0: ANSI/OEM in current CP (TCHAR = char)
/ 1: Unicode in UTF-16 (TCHAR = WCHAR)
/ 2: Unicode in UTF-8 (TCHAR = char)
/ 3: Unicode in UTF-32 (TCHAR = DWORD)
/
/ Also behavior of string I/O functions will be affected by this option.
/ When LFN is not enabled, this option has no effect. */
#define FF_LFN_BUF 255
#define FF_SFN_BUF 12
/* This set of options defines size of file name members in the FILINFO structure
/ which is used to read out directory items. These values should be suffcient for
/ the file names to read. The maximum possible length of the read file name depends
/ on character encoding. When LFN is not enabled, these options have no effect. */
#define FF_FS_RPATH 0
/* This option configures support for relative path.
/
/ 0: Disable relative path and remove related functions.
/ 1: Enable relative path. f_chdir() and f_chdrive() are available.
/ 2: f_getcwd() function is available in addition to 1.
*/
/*---------------------------------------------------------------------------/
/ Drive/Volume Configurations
/---------------------------------------------------------------------------*/
#define FF_VOLUMES 1
/* Number of volumes (logical drives) to be used. (1-10) */
#define FF_STR_VOLUME_ID 0
#define FF_VOLUME_STRS "RAM","NAND","CF","SD","SD2","USB","USB2","USB3"
/* FF_STR_VOLUME_ID switches support for volume ID in arbitrary strings.
/ When FF_STR_VOLUME_ID is set to 1 or 2, arbitrary strings can be used as drive
/ number in the path name. FF_VOLUME_STRS defines the volume ID strings for each
/ logical drives. Number of items must not be less than FF_VOLUMES. Valid
/ characters for the volume ID strings are A-Z, a-z and 0-9, however, they are
/ compared in case-insensitive. If FF_STR_VOLUME_ID >= 1 and FF_VOLUME_STRS is
/ not defined, a user defined volume string table needs to be defined as:
/
/ const char* VolumeStr[FF_VOLUMES] = {"ram","flash","sd","usb",...
*/
#define FF_MULTI_PARTITION 0
/* This option switches support for multiple volumes on the physical drive.
/ By default (0), each logical drive number is bound to the same physical drive
/ number and only an FAT volume found on the physical drive will be mounted.
/ When this function is enabled (1), each logical drive number can be bound to
/ arbitrary physical drive and partition listed in the VolToPart[]. Also f_fdisk()
/ funciton will be available. */
#define FF_MIN_SS 512
#define FF_MAX_SS 512
/* This set of options configures the range of sector size to be supported. (512,
/ 1024, 2048 or 4096) Always set both 512 for most systems, generic memory card and
/ harddisk, but a larger value may be required for on-board flash memory and some
/ type of optical media. When FF_MAX_SS is larger than FF_MIN_SS, FatFs is configured
/ for variable sector size mode and disk_ioctl() function needs to implement
/ GET_SECTOR_SIZE command. */
#define FF_LBA64 0
/* This option switches support for 64-bit LBA. (0:Disable or 1:Enable)
/ To enable the 64-bit LBA, also exFAT needs to be enabled. (FF_FS_EXFAT == 1) */
#define FF_MIN_GPT 0x10000000
/* Minimum number of sectors to switch GPT as partitioning format in f_mkfs and
/ f_fdisk function. 0x100000000 max. This option has no effect when FF_LBA64 == 0. */
#define FF_USE_TRIM 0
/* This option switches support for ATA-TRIM. (0:Disable or 1:Enable)
/ To enable Trim function, also CTRL_TRIM command should be implemented to the
/ disk_ioctl() function. */
/*---------------------------------------------------------------------------/
/ System Configurations
/---------------------------------------------------------------------------*/
#define FF_FS_TINY 0
/* This option switches tiny buffer configuration. (0:Normal or 1:Tiny)
/ At the tiny configuration, size of file object (FIL) is shrinked FF_MAX_SS bytes.
/ Instead of private sector buffer eliminated from the file object, common sector
/ buffer in the filesystem object (FATFS) is used for the file data transfer. */
#define FF_FS_EXFAT 0
/* This option switches support for exFAT filesystem. (0:Disable or 1:Enable)
/ To enable exFAT, also LFN needs to be enabled. (FF_USE_LFN >= 1)
/ Note that enabling exFAT discards ANSI C (C89) compatibility. */
#define FF_FS_NORTC 1
#define FF_NORTC_MON 1
#define FF_NORTC_MDAY 1
#define FF_NORTC_YEAR 2020
/* The option FF_FS_NORTC switches timestamp functiton. If the system does not have
/ any RTC function or valid timestamp is not needed, set FF_FS_NORTC = 1 to disable
/ the timestamp function. Every object modified by FatFs will have a fixed timestamp
/ defined by FF_NORTC_MON, FF_NORTC_MDAY and FF_NORTC_YEAR in local time.
/ To enable timestamp function (FF_FS_NORTC = 0), get_fattime() function need to be
/ added to the project to read current time form real-time clock. FF_NORTC_MON,
/ FF_NORTC_MDAY and FF_NORTC_YEAR have no effect.
/ These options have no effect in read-only configuration (FF_FS_READONLY = 1). */
#define FF_FS_NOFSINFO 0
/* If you need to know correct free space on the FAT32 volume, set bit 0 of this
/ option, and f_getfree() function at first time after volume mount will force
/ a full FAT scan. Bit 1 controls the use of last allocated cluster number.
/
/ bit0=0: Use free cluster count in the FSINFO if available.
/ bit0=1: Do not trust free cluster count in the FSINFO.
/ bit1=0: Use last allocated cluster number in the FSINFO if available.
/ bit1=1: Do not trust last allocated cluster number in the FSINFO.
*/
#define FF_FS_LOCK 0
/* The option FF_FS_LOCK switches file lock function to control duplicated file open
/ and illegal operation to open objects. This option must be 0 when FF_FS_READONLY
/ is 1.
/
/ 0: Disable file lock function. To avoid volume corruption, application program
/ should avoid illegal open, remove and rename to the open objects.
/ >0: Enable file lock function. The value defines how many files/sub-directories
/ can be opened simultaneously under file lock control. Note that the file
/ lock control is independent of re-entrancy. */
/* #include <somertos.h> // O/S definitions */
#define FF_FS_REENTRANT 0
#define FF_FS_TIMEOUT 1000
#define FF_SYNC_t HANDLE
/* The option FF_FS_REENTRANT switches the re-entrancy (thread safe) of the FatFs
/ module itself. Note that regardless of this option, file access to different
/ volume is always re-entrant and volume control functions, f_mount(), f_mkfs()
/ and f_fdisk() function, are always not re-entrant. Only file/directory access
/ to the same volume is under control of this function.
/
/ 0: Disable re-entrancy. FF_FS_TIMEOUT and FF_SYNC_t have no effect.
/ 1: Enable re-entrancy. Also user provided synchronization handlers,
/ ff_req_grant(), ff_rel_grant(), ff_del_syncobj() and ff_cre_syncobj()
/ function, must be added to the project. Samples are available in
/ option/syscall.c.
/
/ The FF_FS_TIMEOUT defines timeout period in unit of time tick.
/ The FF_SYNC_t defines O/S dependent sync object type. e.g. HANDLE, ID, OS_EVENT*,
/ SemaphoreHandle_t and etc. A header file for O/S definitions needs to be
/ included somewhere in the scope of ff.h. */
/*--- End of configuration options ---*/
/*------------------------------------------------------------------------*/
/* Sample Code of OS Dependent Functions for FatFs */
/* (C)ChaN, 2018 */
/*------------------------------------------------------------------------*/
#include "ff.h"
#include "bsp_malloc.h"
#if FF_USE_LFN == 3 /* Dynamic memory allocation */
/*------------------------------------------------------------------------*/
/* Allocate a memory block */
/*------------------------------------------------------------------------*/
void* ff_memalloc ( /* Returns pointer to the allocated memory block (null if not enough core) */
UINT msize /* Number of bytes to allocate */
)
{
//return malloc(msize); /* Allocate a new memory block with POSIX API */
return (void*)mymalloc(SRAMIN,msize);
}
/*------------------------------------------------------------------------*/
/* Free a memory block */
/*------------------------------------------------------------------------*/
void ff_memfree (
void* mblock /* Pointer to the memory block to free (nothing to do if null) */
)
{
//free(mblock); /* Free the memory block with POSIX API */
myfree(SRAMIN,mblock);
}
#endif
#if FF_FS_REENTRANT /* Mutal exclusion */
/*------------------------------------------------------------------------*/
/* Create a Synchronization Object */
/*------------------------------------------------------------------------*/
/* This function is called in f_mount() function to create a new
/ synchronization object for the volume, such as semaphore and mutex.
/ When a 0 is returned, the f_mount() function fails with FR_INT_ERR.
*/
//const osMutexDef_t Mutex[FF_VOLUMES]; /* Table of CMSIS-RTOS mutex */
int ff_cre_syncobj ( /* 1:Function succeeded, 0:Could not create the sync object */
BYTE vol, /* Corresponding volume (logical drive number) */
FF_SYNC_t* sobj /* Pointer to return the created sync object */
)
{
/* Win32 */
*sobj = CreateMutex(NULL, FALSE, NULL);
return (int)(*sobj != INVALID_HANDLE_VALUE);
/* uITRON */
// T_CSEM csem = {TA_TPRI,1,1};
// *sobj = acre_sem(&csem);
// return (int)(*sobj > 0);
/* uC/OS-II */
// OS_ERR err;
// *sobj = OSMutexCreate(0, &err);
// return (int)(err == OS_NO_ERR);
/* FreeRTOS */
// *sobj = xSemaphoreCreateMutex();
// return (int)(*sobj != NULL);
/* CMSIS-RTOS */
// *sobj = osMutexCreate(&Mutex[vol]);
// return (int)(*sobj != NULL);
}
/*------------------------------------------------------------------------*/
/* Delete a Synchronization Object */
/*------------------------------------------------------------------------*/
/* This function is called in f_mount() function to delete a synchronization
/ object that created with ff_cre_syncobj() function. When a 0 is returned,
/ the f_mount() function fails with FR_INT_ERR.
*/
int ff_del_syncobj ( /* 1:Function succeeded, 0:Could not delete due to an error */
FF_SYNC_t sobj /* Sync object tied to the logical drive to be deleted */
)
{
/* Win32 */
return (int)CloseHandle(sobj);
/* uITRON */
// return (int)(del_sem(sobj) == E_OK);
/* uC/OS-II */
// OS_ERR err;
// OSMutexDel(sobj, OS_DEL_ALWAYS, &err);
// return (int)(err == OS_NO_ERR);
/* FreeRTOS */
// vSemaphoreDelete(sobj);
// return 1;
/* CMSIS-RTOS */
// return (int)(osMutexDelete(sobj) == osOK);
}
/*------------------------------------------------------------------------*/
/* Request Grant to Access the Volume */
/*------------------------------------------------------------------------*/
/* This function is called on entering file functions to lock the volume.
/ When a 0 is returned, the file function fails with FR_TIMEOUT.
*/
int ff_req_grant ( /* 1:Got a grant to access the volume, 0:Could not get a grant */
FF_SYNC_t sobj /* Sync object to wait */
)
{
/* Win32 */
return (int)(WaitForSingleObject(sobj, FF_FS_TIMEOUT) == WAIT_OBJECT_0);
/* uITRON */
// return (int)(wai_sem(sobj) == E_OK);
/* uC/OS-II */
// OS_ERR err;
// OSMutexPend(sobj, FF_FS_TIMEOUT, &err));
// return (int)(err == OS_NO_ERR);
/* FreeRTOS */
// return (int)(xSemaphoreTake(sobj, FF_FS_TIMEOUT) == pdTRUE);
/* CMSIS-RTOS */
// return (int)(osMutexWait(sobj, FF_FS_TIMEOUT) == osOK);
}
/*------------------------------------------------------------------------*/
/* Release Grant to Access the Volume */
/*------------------------------------------------------------------------*/
/* This function is called on leaving file functions to unlock the volume.
*/
void ff_rel_grant (
FF_SYNC_t sobj /* Sync object to be signaled */
)
{
/* Win32 */
ReleaseMutex(sobj);
/* uITRON */
// sig_sem(sobj);
/* uC/OS-II */
// OSMutexPost(sobj);
/* FreeRTOS */
// xSemaphoreGive(sobj);
/* CMSIS-RTOS */
// osMutexRelease(sobj);
}
#endif
总结:
1、
2、
3、
4、SD卡读写后需要添加程序
while(1)
{
if(4 == HAL_SD_GetCardState(&hsd1))
{
break;
}
delay_us(100);
}
判断SD卡是否已就绪,否则连续读写会出现错误