2-sat&&http://poj.org/problem?id=3648

本文详细介绍了2-SAT问题的解决方法,包括构图、求最大强连通分量、缩点、拓扑排序和染色等步骤,并通过具体代码示例展示了整个解题过程。

第一道2-sat题,各种坑,各种变态,~,只因为建图的时候多乘了个2,让跪了好几次,而为了找这个错误发了我一整天的时间,真心伤不起~~

下面简单说说2-sat的解题步骤:

1,构图,难点

2,求有向图的最大强连通分量

3,缩点,并重新反向建图

4,拓扑排序后,进行染色

5,有的题需要二分求答案

一、关于模型:

一个2-SAT模型应该是一个满足以下的条件的满足性问题:

1、该模型中存在2n个可以分成n组的元素,每组两个元素。

2、每组元素中,选择了其中一个元素,另外一个元素就不能被选择。这两个元素记为a和!a。

3、该模型中的元素之间存在一些关系,且这些关系是对称的。(除非是同一组元素中的关系,这些关系限定了“必须选择”该组中的某一个元素,可能单独出现)

满足上述条件,要求在满足给定关系的情况下在每组元素中选出一个元素的问题称为2-SAT问题。问是否存在即2-SAT判定问题,当然也可以求出一组可行解。

(上面的关于2-SAT的定义是非常不严谨不专业的,仅为帮助大家理解..可能有错,望大家指出..)

当你看见一道题目,一些事物只有唯一且互斥的两种选择(比如两种取值,两种连接方式等等),那么可以分析下题目给出的条件是否满足对称性,若满足则可通过构图将题目转化成2-SAT问题了。

二、关于构图

要解2-SAT问题或者完成判定问题,首要的任务是构图。从《由对称性解2-SAT问题》这篇论文里,我们可以知道,构图的关键是找到冲突。

若a和b冲突,即选a时不能选b,那么选a时必须选!b(因为不选b就必须选!b,这是一个2-SAT问题必须满足的条件),那么我们就连边<a,!b>。同样的道理,如果选了b,那么就不能选a,必须选!a,所以连边<b,!a>。这样的连边,显然是对称的。具体的例子可以看上面的论文。

总之,弄清楚一点:如果存在边<a,b>,那么表示选择a时必须选择b。只要将所有这种“必须”关系都变成边,然后再判定2-sat或者求解2-sat,就能解决2-SAT问题了。

三、关于解2-SAT

方法是,对原图求一次强连通分量,然后看每组中的两个点是否属于同一个强连通分量,如果存在这种情况,那么无解

然后对于缩点后的图G',我们将G'中所有边转置。进行拓扑排序。
   对于缩点后的所有点,我们先预处理求出所有冲突顶点。例如缩点后Ai所在强连通分支的ID
   为id[ Ai] ,同理~Ai在 id[ ~Ai ],所以冲突顶点
    conflict[ id[Ai] ]=conflict[ id[~Ai] ];
同理conflict[ id[~Ai] ]=conflict[ id[Ai] ];

    设缩点后有Nscc个点。
    然后对拓扑序进行染色,初始化所有点color均为未着色
    顺序遍历得到的拓扑序列,对于未着色的点x,将x染成红色,同时将所有与x矛盾的点conflic[x]染成
蓝色。

2-sat的一组解就等价于所有缩点后点颜色为红色的点,也就是color[ id[i] ]=RED的所有点

 


AC代码:

#include <iostream>
#include<string.h>
#include<algorithm>
#include<cstdio>
#define N 105
#define CLR(arr,val) memset(arr,val,sizeof(arr))
using namespace std;
typedef struct
{
    int from;
    int to;
    int next;
}Node;
Node node[10*N],node1[10*N];
int head[N],head1[N],low[N],dnf[N],belong[N],Stack[N],Queue[N],Conflict[N],In[N],Color[N];
bool isstack[N];
int res,ans,tot,Count,k,index,n,m;
void init()
{
    CLR(head,-1);
    CLR(head1,-1);
    CLR(low,-1);
    CLR(dnf,-1);
    CLR(belong,0);
    CLR(Stack,0);
    CLR(Queue,0);
    CLR(Conflict,0);
    CLR(isstack,false);
    CLR(In,0);
    CLR(Color,-1);
    res=ans=tot=k=index=0;
}
void add(int a,int b)
{
    node[res].from=a;
    node[res].to=b;
    node[res].next=head[a];
    head[a]=res++;
}
void add1(int a,int b)
{
    node1[k].from=a;
    node1[k].to=b;
    node1[k].next=head1[a];
    head1[a]=k++;
}
void Tarjan(int x){//求强连通分量

    low[x]=dnf[x]=++index;
    isstack[x]=true;
    Stack[++tot]=x;
    for(int i=head[x];i!=-1;i=node[i].next)
    {
        int v=node[i].to;
        if(dnf[v]==-1)
        {
            Tarjan(v);
            if(low[x]>low[v]) low[x]=low[v];
        }
        else if(isstack[v]&&low[x]>dnf[v]) low[x]=dnf[v];
    }
    int j;
    if(low[x]==dnf[x])
    {
        ans++;
        do{
            j=Stack[tot--];
            belong[j]=ans;
            isstack[j]=false;
          }while(j!=x);

    }
}
void in(int &a)
{
    char ch;
    while((ch=getchar())<'0'||ch>'9');
    for( a=0;ch>='0'&&ch<='9';ch=getchar()) a=a*10+ch-'0';

}
void build_graph()//重新建图
{
    for(int i=0;i!=res;++i){
               int u=node[i].from,v=node[i].to;

               if(belong[u]!=belong[v]){
                   add1(belong[v],belong[u]);
                   In[belong[u]]++;
               }
             }

}
void Topusort()//拓扑排序+染色
{

             int h=0,t=0;
             for(int i=1;i<=ans;++i)
              if(In[i]==0) Queue[t++]=i;
              while(h<t)
              {

                  int id=Queue[h++];
                  if(Color[id]==-1)
                  {
                      Color[id]=1;
                      Color[Conflict[id]]=2;
                  }
                  for(int i=head1[id];i!=-1;i=node1[i].next)
                  {
                     int v=node1[i].to;
                     if(--In[v]==0) Queue[t++]=v;

                  }

              }
}
void slove()
{
    for(int i=0;i!=2*n;++i)
           if(dnf[i]==-1) Tarjan(i);
           for(int i=0;i!=n;++i){
             if(belong[2*i]==belong[2*i+1])
             {
                   puts("bad luck");
                 return;
             }
             Conflict[belong[2*i]]=belong[2*i+1];
             Conflict[belong[2*i+1]]=belong[2*i];
            }
             build_graph();
             Topusort();
              for(int i=2;i!=2*n;i+=2)
                 {
                    if(i!=2) printf(" ");
                    if(Color[belong[i]]==Color[belong[0]]) printf("%dw",i/2);
                    else printf("%dh",i/2);
                 }
                printf("\n");
}
int main()
{
    while(1)
    {
        bool flag=false;
        in(n),in(m);
        if(!n&&!m) return 0;
         init();
        char s1[105],s2[105];
        for(int i=0;i!=m;++i)
        {
            int a,b;
            char c,d;
            scanf("%s",s1);
            scanf("%s",s2);
            sscanf(s1,"%d%c",&a,&c);
            sscanf(s2,"%d%c",&b,&d);
            if(c=='h'&&d=='h')
            {
                add(2*a+1,2*b);
                add(2*b+1,2*a);
            }
            else if(c=='h'&&d=='w')
            {
                add(2*a+1,2*b+1);
                add(2*b,2*a);
            }
            else if(c=='w'&&d=='h')
            {
                add(2*a,2*b);
                add(2*b+1,2*a+1);
            }
            else if(c=='w'&&d=='w')
            {
                add(2*a,2*b+1);
                add(2*b,2*a+1);
            }
        }
        add(0,1);
        slove();
    }return 0;
}


<think>首先,用户想了解POJ 3104题目的详细信息,包括题目描述、解题思路和代码实现。用户提供了几个引用,我需要参考这些引用,但要根据用户的问题来整合。 回顾用户提供的引用: - 引用[1]:是关于POJ 3104 "Drying"的二分查找解法。它解释了算法:对于每个衣服的水量ai,如果ai小于等于mid(时间),则自然晾干;否则,需要机器烘干和自然晾干结合,并给出了公式x1 >= (ai - mid)/(k-1),其中k是烘干机的效率。代码是用C++写的,实现了二分查找。 - 引用[2]:简要描述了输入格式:第一行是n(衣服数量),第二行是ai(每个衣服的初始水量),第三行是k(烘干机的效率)。 - 引用[3]:提供了数学计算+二分的题解,解释了公式:吹风次数k = (a[i] - mid)/(m-1),其中m是k(烘干效率),但这里变量名冲突了。应该是k是烘干效率,吹风次数是ceil((a[i]-mid)/(k-1))。 - 引用[4]:类似引用[2],描述了输入格式。 用户的问题是:"我想查找POJ 3104题目的相关信息,可能包括题目描述、解题思路、代码实现等 请问POJ 3104题目解析及代码实现"。 所以,我需要提供: 1. 题目描述:基于引用,POJ 3104是"Drying"问题。输入包括n个衣服的初始水量ai和烘干机效率k。目标是找到最小时间使所有衣服干燥。衣服每分钟自然晾干1单位水;使用烘干机每分钟晾干k单位水,但烘干机每分钟只能用于一件衣服。 2. 解题思路:使用二分查找来最小化时间。思路是假设一个时间mid,检查是否能在mid时间内干燥所有衣服。对于每件衣服,如果ai <= mid,自然晾干即可;否则,需要烘干机帮助,时间为ceil((ai - mid)/(k-1))总烘干时间不能超过mid。 3. 代码实现:基于引用[1]的C++代码,我可以提供一个清晰的版本。 系统指令要求: - 行内数学表达式用$...$,例如 $x^2$。 - 独立公式用$$...$$并单独成段。 - 使用中文回答。 - 生成相关问题。 - 回答中引用的段落末尾自然地添加引用标识[^1]。 - 回答结构清晰,逐步解决问题,保证真实可靠。 组织回答: 1. **题目描述**:描述POJ 3104问题。 2. **解题思路**:详细解释二分查找方法,数学公式。 3. **代码实现**:提供C++代码(基于引用[1]),并解释关键部分。 4. **相关问题**:在末尾生成相关问题。 确保LaTeX语法正确: - 例如,公式 $(ai - mid)/(k-1)$ 应该用LaTeX表示:$\frac{a_i - \text{mid}}{k-1}$。 - 向上取整用 $\lceil \cdot \rceil$。 代码块要正确格式。 现在,构建回答。 **题目描述**: POJ 3104 "Drying" 是一个关于烘干衣服的问题。给定n件衣服,每件衣服有一个初始水量 $a_i$($1 \leq a_i \leq 10^9$)。衣服每分钟自然晾干1单位水。如果使用烘干机,每分钟可以额外晾干k单位水($1 \leq k \leq 10^9$),但烘干机每分钟只能用于一件衣服。目标是找到最小时间使所有衣服干燥[^2][^4]。 **解题思路**: 使用二分查找来优化时间。设最小时间为T。对于每个候选时间mid,检查是否能在mid分钟内干燥所有衣服。 - 对于一件衣服,如果初始水量 $a_i \leq \text{mid}$,则自然晾干即可。 - 如果 $a_i > \text{mid}$,则需要使用烘干机。设自然晾干时间为 $x_2$,烘干时间为 $x_1$,则总时间 $x_1 + x_2 = \text{mid}$,且晾干的水量为 $k \cdot x_1 + x_2 \geq a_i$。 代入 $x_2 = \text{mid} - x_1$,得: $$ k \cdot x_1 + (\text{mid} - x_1) \geq a_i $$ 简化得: $$ (k-1) x_1 \geq a_i - \text{mid} $$ 因此,烘干时间 $x_1 \geq \frac{a_i - \text{mid}}{k-1}$。由于 $x_1$ 必须是整数且不能为负,实际所需烘干时间为 $\lceil \frac{a_i - \text{mid}}{k-1} \rceil$。 检查时,计算所有衣服的烘干时间之和 $\sum \lceil \frac{a_i - \text{mid}}{k-1} \rceil$。如果这个和小于等于mid,则mid可行[^3]。 注意:当 $k=1$ 时,烘干机无效,只能自然晾干,所以最小时间是 $\max(a_i)$。 **代码实现**: 以下是基于C++的实现: ```cpp #include <iostream> #include <algorithm> #include <cmath> using namespace std; const int MAXN = 100010; int a[MAXN]; int n, k; bool check(int mid) { long long need = 0; // 总烘干时间 for (int i = 0; i < n; i++) { if (a[i] <= mid) continue; // 计算所需烘干时间,向上取整 need += (long long)ceil((double)(a[i] - mid) / (k - 1)); if (need > mid) return false; // 超过时间限制 } return true; } int main() { cin >> n; for (int i = 0; i < n; i++) { cin >> a[i]; } cin >> k; sort(a, a + n); // 排序有助于优化,但非必需 if (k == 1) { cout << a[n-1] << endl; // 最大水量 return 0; } int l = 0, r = a[n-1]; // 时间范围,最大可能时间为最大水量 while (l < r) { int mid = l + (r - l) / 2; // 避免溢出 if (check(mid)) { r = mid; // 可行,尝试更小时间 } else { l = mid + 1; // 不可行,增加时间 } } cout << l << endl; return 0; } ``` 代码解释: - `check(mid)` 函数检查mid时间是否足够。 - 使用`long long`防止溢出,因为水量可能很大。 - 当$k=1$时,直接输出最大水量。 - 二分查找范围是[0, max(a_i)]。 **相关问题**: 在末尾生成几个相关问题。 确保引用: - 在描述中添加[^2][^4],但用户提供的引用是参考,所以我可以自然地引用它们。 最终回答结构: - 题目描述 - 解题思路 - 代码实现 - 相关问题 </think> ### POJ 3104 "Drying" 题目解析及代码实现 #### 题目描述 POJ 3104 "Drying" 是一个优化问题:给定 $n$ 件衣服,每件有初始水量 $a_i$($1 \leq a_i \leq 10^9$)。衣服每分钟自然晾干 1 单位水;若使用烘干机,每分钟可额外干燥 $k$ 单位水($1 \leq k \leq 10^9$),但每分钟只能处理一件衣服。目标是找到最小时间 $T$,使得所有衣服完全干燥[^2]。 **输入格式**: - 第一行:整数 $n$(衣服数量) - 第二行:$n$ 个整数 $a_i$(初始水量) - 第三行:整数 $k$(烘干机效率) **输出格式**: 最小干燥时间 $T$。 --- #### 解题思路 使用**二分查找**求解最小时间 $T$。核心思想是:假设一个候选时间 $\text{mid}$,检查是否能在 $\text{mid}$ 分钟内干燥所有衣服。验证函数基于以下逻辑: 1. **自然晾干**:若 $a_i \leq \text{mid}$,衣服自然晾干即可,无需额外处理。 2. **机器辅助**:若 $a_i > \text{mid}$,需结合烘干机和自然晾干。设: - $x_1$:烘干机使用时间(每分钟干燥 $k$ 单位) - $x_2$:自然晾干时间(每分钟干燥 1 单位) 总时间约束为 $x_1 + x_2 = \text{mid}$,水量约束为 $k \cdot x_1 + x_2 \geq a_i$。 代入 $x_2 = \text{mid} - x_1$ 得: $$ k \cdot x_1 + (\text{mid} - x_1) \geq a_i \implies (k-1) x_1 \geq a_i - \text{mid} $$ 因此,烘干时间需满足: $$ x_1 \geq \frac{a_i - \text{mid}}{k-1} $$ 实际计算时,需对 $\frac{a_i - \text{mid}}{k-1}$ **向上取整**,即 $\lceil \frac{a_i - \text{mid}}{k-1} \rceil$。 3. **可行性检查**:所有衣服的烘干时间之和 $\sum \lceil \frac{a_i - \text{mid}}{k-1} \rceil$ 必须 $\leq \text{mid}$。 4. **特例**:若 $k=1$,烘干机无效,最小时间 $T = \max(a_i)$。 **算法步骤**: 1. 对 $a_i$ 排序(可选优化)。 2. 二分查找 $T$:初始范围 $[0, \max(a_i)]$。 - 若 $\text{check}(\text{mid})$ 返回 `true`,则尝试更小时间($r = \text{mid}$)。 - 否则尝试更大时间($l = \text{mid} + 1$)。 --- #### 代码实现(C++) ```cpp #include <iostream> #include <algorithm> #include <cmath> using namespace std; const int MAXN = 100010; int a[MAXN]; int n, k; // 检查mid时间是否可行 bool check(int mid) { long long need = 0; // 总烘干时间(防溢出) for (int i = 0; i < n; i++) { if (a[i] <= mid) continue; // 自然晾干即可 need += (long long)ceil((double)(a[i] - mid) / (k - 1)); // 向上取整 if (need > mid) return false; // 超过时间限制 } return need <= mid; } int main() { cin >> n; for (int i = 0; i < n; i++) cin >> a[i]; cin >> k; if (k == 1) { cout << *max_element(a, a + n) << endl; // 特例:k=1时直接输出最大值 return 0; } sort(a, a + n); // 排序优化二分 int l = 0, r = a[n - 1]; // 时间范围 [0, 最大水量] while (l < r) { int mid = l + (r - l) / 2; // 避免溢出 if (check(mid)) r = mid; // 可行,尝试更小时间 else l = mid + 1; // 不可行,增加时间 } cout << l << endl; return 0; } ``` **代码说明**: - **`check` 函数**:计算每件衣服所需烘干时间,并检查总和是否 $\leq \text{mid}$。 - **向上取整处理**:使用 `ceil((double)(a[i] - mid) / (k - 1))` 确保精度。 - **时间复杂度**:$O(n \log (\max(a_i)))$,高效处理大数据范围。 - **注意事项**:当 $k=1$ 时需单独处理,避免除零错误。 --- #### 相关问题 1. 如何证明二分查找在该问题中的正确性? 2. 当 $k$ 接近 1 时,算法性能是否会退化?如何优化? 3. 是否存在其他方法(如贪心或动态规划)解决此问题? 4. 在实现中,为什么使用 `long long` 存储烘干时间? [^1]: POJ 3104 Drying (二分) 解题思路及代码实现参考。 [^2]: POJ-3104 Drying 输入格式描述。 [^3]: Poj---3104 数学计算+二分操作详解。 : POJ - 3104 Drying 题目约束说明。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值