【说明】:欢迎加入:faster-rcnn 交流群 238138700,关于imdb和roidb的生成都是在函数train_rpn的中,所以我们从这个函数开始,逐个跟进看如何执行得到我们需要的imdb和roidb:
def train_rpn(queue=None, imdb_name=None, init_model=None, solver=None,
max_iters=None, cfg=None):
"""Train a Region Proposal Network in a separate training process.
"""
# Not using any proposals, just ground-truth boxes
cfg.TRAIN.HAS_RPN = True
cfg.TRAIN.BBOX_REG = False # applies only to Fast R-CNN bbox regression
cfg.TRAIN.PROPOSAL_METHOD = 'gt'
cfg.TRAIN.IMS_PER_BATCH = 1
print 'Init model: {}'.format(init_model)
print('Using config:')
pprint.pprint(cfg)
import caffe
_init_caffe(cfg)
roidb, imdb = get_roidb(imdb_name) # 调用函数,返回训练数据
print 'roidb len: {}'.format(len(roidb))
output_dir = get_output_dir(imdb)
print 'Output will be saved to `{:s}`'.format(output_dir)
model_paths = train_net(solver, roidb, output_dir, #传入数据roidb,供训练
pretrained_model=init_model,
max_iters=max_iters)
# Cleanup all but the final model
for i in model_paths[:-1]:
os.remove(i)
rpn_model_path = model_paths[-1]
# Send final model path through the multiprocessing queue
queue.put({'model_path': rpn_model_path})
所以,进入get_roidb函数:
def get_roidb(imdb_name, rpn_file=None):
imdb = get_imdb(imdb_name) # 调用该函数,返回imdb
print 'Loaded dataset `{:s}` for training'.format(imdb.name)
imdb.set_proposal_method(cfg.TRAIN.PROPOSAL_METHOD)
print 'Set proposal method: {:s}'.format(cfg.TRAIN.PROPOSAL_METHOD)
if rpn_file is not None:
imdb.config['rpn_file'] = rpn_file
roidb = get_training_roidb(imdb) #利用imdb,产生roi_db
return roidb, imdb
所以我们要先看imdb是如何产生的,然后看如何借助imdb产生roidb
def get_imdb(name):
"""Get an imdb (image database) by name."""
if not __sets.has_key(name):
raise KeyError('Unknown dataset: {}'.format(name))
return __sets[name]()
从上面可见,get_imdb这个函数的实现