1.矩阵的行列式
from numpy import *
#n阶方阵的行列式运算
A = mat([[1, 2, 4, 5, 7], [9, 12, 11, 8, 2],[6, 4, 3, 2, 1], [9, 1, 3, 4, 5], [0, 2, 3, 4, 1]])
print("det(A):", linalg.det(A))
输出结果:
det(A): -812.0
2.矩阵的逆
from numpy import *
A = c
invA = linalg.inv(A) #矩阵的逆
print("inv(A):", invA)
输出结果
inv(A): [[-0.07142857 -0.01231527 0.05295567 0.09605911 -0.00862069]
[ 0.21428571 -0.37684729 1.22044335 -0.46059113 0.3362069 ]
[-0.21428571 0.82512315 -2.04802956 0.56403941 -0.92241379]
[ 0. -0.4137931 0.87931034 -0.17241379 0.81034483]
[ 0.21428571 -0.06650246 0.18596059 -0.08128079 -0.14655172]]
3.矩阵的对称
from numpy import *
A = mat([[1, 2, 4, 5, 7], [9, 12, 11, 8, 2],[6, 4, 3, 2, 1], [9, 1, 3, 4, 5], [0, 2, 3, 4, 1]])
AT = A.T #矩阵的对称
print(A * AT)
输出结果:
[[ 95 131 43 78 43]
[131 414 153 168 91]
[ 43 153 66 80 26]
[ 78 168 80 132 32]
[ 43 91 26 32 30]]
4.矩阵的秩
from numpy import *
A = mat([[1, 2, 4, 5, 7], [9, 12, 11, 8, 2],[6, 4, 3, 2, 1], [9, 1, 3, 4, 5], [0, 2, 3, 4, 1]])
print(linalg.matrix_rank(A))
输出结果:
5