# -*- codingutf-8 -*-
__author__ = 'yangxin_ryan'
from numpy import *
import matplotlib.pylab as plt
class Regression(object):
def load_data_set(self, file_name):
num_feat = len(open(file_name).readline().split('\t')) - 1
data_mat = []
label_mat = []
fr = open(file_name)
for line in fr.readlines():
line_arr = []
cur_line = line.strip().split("\t")
for i in range(num_feat):
line_arr.append(float(cur_line[i]))
data_mat.append(line_arr)
label_mat.append(float(cur_line[-1]))
return data_mat, label_mat
def stand_regres(self, x_arr, y_arr):
x_mat = mat(x_arr)
y_mat = mat(y_arr).T
xTx = x_mat.
机器学习实战笔记 --- Python实现线性回归
最新推荐文章于 2024-01-22 19:13:26 发布