R语言矩阵/缺失值处理

缺失值处理一般包括三步:
1. 识别缺失数据;
2. 检查导致数据缺失的原因;
3. 删除包含缺失值的实例或用合理的数值代替(插补)缺失值。

  • 1.判断缺失值
    函数is.na()、is.nan()和is.infinite()可分别用来识别缺失值、不可能值和无穷值。每个返回结果都是
    TRUE或FALSE
    na表示缺失值
    nan表示NOT A NUMBER
    infinite表示+-Inf
    一定要亲手试x = 0/0,以及x = 1/0
>x <- NA
> is.na(x)
[1] TRUE
> is.nan(x)
[1] FALSE
> is.infinite(x)
 [1] FALSE

函数complete.cases()可用来识别矩阵或数据框中没有缺失值的行
超级好用

#加载数据集
>data(sleep,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值