HDU 2680 Choose the best route

本文介绍了解决公交路线规划问题的两种有效算法:一种是利用反向图来寻找从多个起点到单一终点的最短路径;另一种则是通过引入一个超级原点连接所有起点来解决问题。这两种方法均适用于有向图,并详细展示了如何使用Dijkstra算法进行最短路径计算。

 

这道题是有向图,这点要搞清楚,不然会WA的,Orz、、

解法有两种思路

1:用反向图,就是用终点当起点,求到各个点的最短路,从而得到从各起点到终点的距离,则选出最小的即可。

2:加一个超级原点(连通各个起点,并且距离为0)

 

                              Choose the best route

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4643    Accepted Submission(s): 1466


Problem Description
One day , Kiki wants to visit one of her friends. As she is liable to carsickness , she wants to arrive at her friend’s home as soon as possible . Now give you a map of the city’s traffic route, and the stations which are near Kiki’s home so that she can take. You may suppose Kiki can change the bus at any station. Please find out the least time Kiki needs to spend. To make it easy, if the city have n bus stations ,the stations will been expressed as an integer 1,2,3…n.
 


 

Input
There are several test cases.
Each case begins with three integers n, m and s,(n<1000,m<20000,1=<s<=n) n stands for the number of bus stations in this city and m stands for the number of directed ways between bus stations .(Maybe there are several ways between two bus stations .) s stands for the bus station that near Kiki’s friend’s home.
Then follow m lines ,each line contains three integers p , q , t (0<t<=1000). means from station p to station q there is a way and it will costs t minutes .
Then a line with an integer w(0<w<n), means the number of stations Kiki can take at the beginning. Then follows w integers stands for these stations.
 


 

Output
The output contains one line for each data set : the least time Kiki needs to spend ,if it’s impossible to find such a route ,just output “-1”.
 


 

Sample Input
5 8 5 1 2 2 1 5 3 1 3 4 2 4 7 2 5 6 2 3 5 3 5 1 4 5 1 2 2 3 4 3 4 1 2 3 1 3 4 2 3 2 1 1
 


 

Sample Output
1 -1
 

反向图:

#include <iostream>
#include <stdlib.h>
#include <algorithm>
#include <math.h>
using namespace std;
const int M = 1005;
#define inf 0x7f7f7f
int dis[M],mp[M][M];
bool visit[M];
int n,m,start,end;
int a,b,c;
int s[M];

void Dijkstra( int st )
{
    for( int i=1 ; i<= n ; i++ ){
         visit[i] = false;
         dis[i] = mp[st][i];     
    }
    dis[st] = 0;
    visit[st] = true;
    int tmp , k;
    for( int j=1 ; j<=n ; j++ ){
         tmp = inf;
         for( int j=1 ; j<=n ; j++ )     
              if( !visit[j] && tmp > dis[j] )
                  tmp = dis[ k = j ];
         if( tmp == inf )
             break;
         visit[k] = true;
         for( int j=1 ; j<=n ; j++ )
              if( !visit[j] && dis[j] > mp[k][j] + dis[k] )
                  dis[j] = mp[k][j] + dis[k];
    } 
}

int main()
{
    while( scanf("%d%d%d",&n,&m,&end) != EOF ){
           for( int i=1 ; i<=n ; i++ )
                for( int j=1 ; j<=n ; j++ ){
                     if( i==j )
                         mp[i][j] = 0;
                     else
                         mp[i][j] = inf;     
                }
                for( int i=0 ; i<m ; i++ ){
                     scanf("%d%d%d",&a,&b,&c);
                     if( mp[b][a] > c )
                         mp[b][a] = c;
                }
                int ans;
                ans = inf;
                scanf("%d",&start);
                for( int i=0 ; i<start ; i++ )
                     scanf("%d",&s[i]);
                Dijkstra( end );
                for( int i=0 ; i<start ; i++ ){
                     if( ans > dis[ s[i] ] )
                         ans = dis[ s[i] ];
                }
                
                if( ans == inf )
                    printf("-1\n");
                else
                    printf("%d\n",ans);
    }
    return 0;
}


 


超级原点:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;

#define MAX 0x3f3f3f3f
#define N 1010

int num, road, destination;
int map[N][N], dis[N], oppo[N];
bool visit[N];

void Dijkstra(int start)
{
    int temp, k;
    memset(visit, 0, sizeof(visit));
    for(int i = 1; i <= num; ++i) 
        dis[i] = map[start][i];
	dis[start] = 0;
	visit[start] = 1;
    for(int i = 1; i <= num; ++i)
    {
        temp = MAX;
        for(int j = 1; j <= num; ++j)
            if(!visit[j] && temp > dis[j])
                temp = dis[k = j];
        if(temp == MAX) break;
        visit[k] = 1;
        for(int j = 1; j <= num; ++j)
            if(!visit[j] && dis[j] > dis[k] + map[k][j])
                dis[j] = dis[k] + map[k][j];
    }
}

int main()
{
    int x, y, cost, exp, minn;
    while(scanf("%d%d%d", &num, &road, &destination) != EOF)
    {
        memset(map, MAX, sizeof(map));
        for(int i = 1; i <= road; ++i)
        {
            scanf("%d%d%d", &x, &y, &cost);
			if(cost < map[y][x]) //巧妙之处:反向图
            map[y][x] = cost;
        }
        scanf("%d", &exp);
        for(int i = 1; i <= exp; ++i)
            scanf("%d", &oppo[i]);
        Dijkstra(destination);
		minn = MAX;
		for(int i = 1; i <= exp; ++i) //起点找到终点最小值
			if(dis[oppo[i]] < minn)
				minn = dis[oppo[i]];
        if(minn == MAX) printf("-1\n");
        else printf("%d\n", minn);
    }
    return 0;
}


 

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值