R(N)
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1460 Accepted Submission(s): 763
Problem Description
We know that some positive integer x can be expressed as x=A^2+B^2(A,B are integers). Take x=10 for example,
10=(-3)^2+1^2.
We define R(N) (N is positive) to be the total number of variable presentation of N. So R(1)=4, which consists of 1=1^2+0^2, 1=(-1)^2+0^2, 1=0^2+1^2, 1=0^2+(-1)^2.Given N, you are to calculate R(N).
10=(-3)^2+1^2.
We define R(N) (N is positive) to be the total number of variable presentation of N. So R(1)=4, which consists of 1=1^2+0^2, 1=(-1)^2+0^2, 1=0^2+1^2, 1=0^2+(-1)^2.Given N, you are to calculate R(N).
Input
No more than 100 test cases. Each case contains only one integer N(N<=10^9).
Output
For each N, print R(N) in one line.
Sample Input
2 6 10 25 65
Sample Output
4 0 8 12 16HintFor the fourth test case, (A,B) can be (0,5), (0,-5), (5,0), (-5,0), (3,4), (3,-4), (-3,4), (-3,-4), (4,3) , (4,-3), (-4,3), (-4,-3)
Source
Recommend
xubiao
#include<stdio.h>
#include<math.h>
int main()
{
int k,i,j,n,ans;
while(~scanf("%d",&n))
{
if(!n)
{
printf("1\n");
continue;
}
ans=0;
k=(int)sqrt(n/2.0);
for(i=0;i<=k;++i)
{
j=(int)sqrt(n-i*i);
if(i*i+j*j==n)
{
if(i==j||i==0||j==0) //其中有一个为0或者x==y时候只有四种情况
ans+=4;
else
ans+=8; //x与y不为0且不相等的时候有8种情况
}
}
printf("%d\n",ans);
}
return 0;
}