63、医学影像技术:前列腺手术引导与胎儿超声标准平面检测

医学影像技术:前列腺手术引导与胎儿超声标准平面检测

在医学领域,影像技术对于疾病的诊断和治疗起着至关重要的作用。本文将介绍两种不同的影像技术应用,一是用于机器人辅助腹腔镜根治性前列腺切除术(RALRP)的磁共振 - 超声(MR - 超声)引导系统,二是利用知识迁移循环神经网络(T - RNN)自动检测胎儿超声标准平面的方法。

1. MR - 超声引导系统在前列腺手术中的应用
1.1 TRUS 数据采集

在前列腺手术中,经直肠超声(TRUS)数据的采集是重要的第一步。系统会自动控制 TRUS 换能器的旋转角度,并保存每张图像的位置信息。所有的 TRUS 体积数据是使用 214 元素、6 厘米长的矢状阵列采集的,发射频率为 9 MHz,成像深度为 5.6 厘米。通过围绕探头轴进行 90 度旋转扫描,以 0.2 度的增量获取图像,每个体积的图像采集时间为 45 秒。

1.2 TRUS - MR 配准

在手术前,放射科医生会手动分割术前 T2 加权 MR 体积中每个横截面上的前列腺腺体。为了从矢状体积中获取横截面,需要将术中 TRUS B 模式图像插值到 3D 网格中。然后,采用实时半自动算法对超声体积中的前列腺进行 3D 分割。该算法在近距离放射治疗中经常使用,是一种快速、一致且准确的 3D TRUS 前列腺腺体描绘工具。

基于 TRUS 和 MR 体积中前列腺的分割表面,构建二进制体积。通过主坐标轴变换将 MR 二进制体积与 TRUS 二进制体积进行刚性对齐(并缩放),然后对对齐后的 MR 体积进行变形以匹配 TRUS 体积。配准算法基于变分框架,最小化两个二进制体积之间的平方差之和,并对位移图进行弹性正则化。 </

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析仿真验证相结合。
先展示下效果 https://pan.quark.cn/s/a4b39357ea24 本项目是本人参加BAT等其他公司电话、现场面试之后总结出来的针对Java面试的知识点或真题,每个点或题目都是在面试中被问过的。 除开知识点,一定要准备好以下套路: 个人介绍,需要准备一个1分钟的介绍,包括学习经历、工作经历、项目经历、个人优势、一句话总结。 一定要自己背得滚瓜烂熟,张口就来 抽象概念,当面试官问你是如何理解多线程的时候,你要知道从定义、来源、实现、问题、优化、应用方面系统性地回答 项目强化,至少知识点的比例是五五开,所以必须针对简历中的两个以上的项目,形成包括【架构和实现细节】,【正常流程和异常流程的处理】,【难点+坑+复盘优化】三位一体的组合拳 压力练习,面试的时候难免紧张,可能会严重影响发挥,通过平时多找机会参交流分享,或找人做压力面试来改善 表达练习,表达能力非常影响在面试中的表现,能否简练地将答案告诉面试官,可以通过给自己讲解的方式刻意练习 重点针对,面试官会针对简历提问,所以请针对简历上写的所有技术点进行重点准备 Java基础 JVM原理 集合 多线程 IO 问题排查 Web框架、数据库 Spring MySQL Redis 通用基础 操作系统 网络通信协议 排序算法 常用设计模式 从URL到看到网页的过程 分布式 CAP理论 锁 事务 消息队列 协调器 ID生成方式 一致性hash 限流 微服务 微服务介绍 服务发现 API网关 服务容错保护 服务配置中心 算法 数组-快速排序-第k大个数 数组-对撞指针-最大蓄水 数组-滑动窗口-最小连续子数组 数组-归并排序-合并有序数组 数组-顺时针打印矩形 数组-24点游戏 链表-链表反转-链表相加 链表-...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值