1067. Sort with Swap(0,*) (25)
Given any permutation of the numbers {0, 1, 2,..., N-1}, it is easy to sort them in increasing order. But what if Swap(0, *) is the ONLY operation that is allowed to use? For example, to sort {4, 0, 2, 1, 3} we may apply the swap operations in the following way:
Swap(0, 1) => {4, 1, 2, 0, 3}
Swap(0, 3) => {4, 1, 2, 3, 0}
Swap(0, 4) => {0, 1, 2, 3, 4}
Now you are asked to find the minimum number of swaps need to sort the given permutation of the first N nonnegative integers.
Input Specification:
Each input file contains one test case, which gives a positive N (<=105) followed by a permutation sequence of {0, 1, ..., N-1}. All the numbers in a line are separated by a space.
Output Specification:
For each case, simply print in a line the minimum number of swaps need to sort the given permutation.
Sample Input:10 3 5 7 2 6 4 9 0 8 1Sample Output:
9
如果有k个数形成一个环,如果0也在这个环里,那么需要交换k-1次,否则就需要k+1次,即任意一元素与0交换形成k+1个元素的环。
记录环的个数和不在自己位置的数的个数。由于初始只能有<=1个环包含0,分一下情况。
把交换的过程换成直接赋值,会省一些时间吧~~~
#include<iostream> #include<vector> #include<algorithm> using namespace std; int main() { int n; cin>>n; vector<int>num(n); for(int i=0;i<n;++i) cin>>num[i]; int cnt=0,cntn=0; bool flag=(num[0]==0); for(int i=0;i<n;++i) { int s=i; if(num[s]!=s) cnt++; while(num[s]!=s) { int next=num[s]; num[s]=s; cntn++; s=next; } } if(flag) cout<<cnt+cntn<<endl; else cout<<max(0,cntn+cnt-2)<<endl; return 0; }