1104. Sum of Number Segments (20)
Given a sequence of positive numbers, a segment is defined to be a consecutive subsequence. For example, given the sequence {0.1, 0.2, 0.3, 0.4}, we have 10 segments: (0.1) (0.1, 0.2) (0.1, 0.2, 0.3) (0.1, 0.2, 0.3, 0.4) (0.2) (0.2, 0.3) (0.2, 0.3, 0.4) (0.3) (0.3, 0.4) (0.4).
Now given a sequence, you are supposed to find the sum of all the numbers in all the segments. For the previous example, the sum of all the 10 segments is 0.1 + 0.3 + 0.6 + 1.0 + 0.2 + 0.5 + 0.9 + 0.3 + 0.7 + 0.4 = 5.0.
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N, the size of the sequence which is no more than 105. The next line contains N positive numbers in the sequence, each no more than 1.0, separated by a space.
Output Specification:
For each test case, print in one line the sum of all the numbers in all the segments, accurate up to 2 decimal places.
Sample Input:4 0.1 0.2 0.3 0.4Sample Output:
5.00
找到每个数出现次数的规律,第i个数出现的次数为i*(n+1-i),再乘上值求和即可。
#include<iostream> #include<algorithm> using namespace std; int main() { double a; int n; cin>>n; double s=0; for(int i=1;i<=n;i++) { cin>>a; s=s+a*(n-i+1)*i; } printf("%.2lf",s); return 0; }