测试:
public class HashCodeDemo {
public static void main(String[] args) {
String str = new String("test");
String str2= new String("test");
System.out.println(str.hashCode());
System.out.println(str2.hashCode());
System.out.println(System.identityHashCode(str));
System.out.println(System.identityHashCode(str2));
System.out.println("----------------test------------");
Test test = new Test();
Test test2 = new Test();
System.out.println(test.hashCode());
System.out.println(test2.hashCode());
System.out.println(System.identityHashCode(test));
System.out.println(System.identityHashCode(test2));
}
}
运行结果:
为什么String调用hashCode()和System.identityHashCode()返回值不同呢?为什么Test调用hashCode()和System.identityHashCode()返回值又相同呢?
System.identityHashCode()和hashCode()到底有什么不同呢?这里个人简单分析一下,有不足之处劳烦指出。
System.identityHashCode底层实现
System.identityHashCode底层调用C语言System.c来实现
openjdk源码路径:jdk-935758609767\src\share\native\java\lang\System.c
// 核心代码:
Java_java_lang_System_identityHashCode(JNIEnv *env, jobject this, jobject x)
{
return JVM_IHashCode(env, x);
}
其中调用jvm.cpp的JVM_IHashCode()方法
hotspot源码路径:hotspot-37240c1019fd\src\share\vm\prims\jvm.cpp
JVM_ENTRY(jint, JVM_IHashCode(JNIEnv* env, jobject handle))
JVMWrapper("JVM_IHashCode");
// as implemented in the classic virtual machine; return 0 if object is NULL
return handle == NULL ? 0 : ObjectSynchronizer::FastHashCode (THREAD, JNIHandles::resolve_non_null(handle)) ;
JVM_END
再来看一下synchronizer.cpp的ObjectSynchronizer::FastHashCode()方法
hotspot源码路径:hotspot-37240c1019fd\src\share\vm\runtime\synchronizer.cpp
intptr_t ObjectSynchronizer::FastHashCode (Thread * Self, oop obj) {
if (UseBiasedLocking) {
// NOTE: many places throughout the JVM do not expect a safepoint
// to be taken here, in particular most operations on perm gen
// objects. However, we only ever bias Java instances and all of
// the call sites of identity_hash that might revoke biases have
// been checked to make sure they can handle a safepoint. The
// added check of the bias pattern is to avoid useless calls to
// thread-local storage.
if (obj->mark()->has_bias_pattern()) {
// Box and unbox the raw reference just in case we cause a STW safepoint.
Handle hobj (Self, obj) ;
// Relaxing assertion for bug 6320749.
assert (Universe::verify_in_progress() ||
!SafepointSynchronize::is_at_safepoint(),
"biases should not be seen by VM thread here");
BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current());
obj = hobj() ;
assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
}
}
// hashCode() is a heap mutator ...
// Relaxing assertion for bug 6320749.
assert (Universe::verify_in_progress() ||
!SafepointSynchronize::is_at_safepoint(), "invariant") ;
assert (Universe::verify_in_progress() ||
Self->is_Java_thread() , "invariant") ;
assert (Universe::verify_in_progress() ||
((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
ObjectMonitor* monitor = NULL;
markOop temp, test;
intptr_t hash;
markOop mark = ReadStableMark (obj);
// object should remain ineligible for biased locking
assert (!mark->has_bias_pattern(), "invariant") ;
if (mark->is_neutral()) {
hash = mark->hash(); // this is a normal header
if (hash) { // if it has hash, just return it
return hash;
}
hash = get_next_hash(Self, obj); // allocate a new hash code
temp = mark->copy_set_hash(hash); // merge the hash code into header
// use (machine word version) atomic operation to install the hash
test = (markOop) Atomic::cmpxchg_ptr(temp, obj->mark_addr(), mark);
if (test == mark) {
return hash;
}
// If atomic operation failed, we must inflate the header
// into heavy weight monitor. We could add more code here
// for fast path, but it does not worth the complexity.
} else if (mark->has_monitor()) {
monitor = mark->monitor();
temp = monitor->header();
assert (temp->is_neutral(), "invariant") ;
hash = temp->hash();
if (hash) {
return hash;
}
// Skip to the following code to reduce code size
} else if (Self->is_lock_owned((address)mark->locker())) {
temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned
assert (temp->is_neutral(), "invariant") ;
hash = temp->hash(); // by current thread, check if the displaced
if (hash) { // header contains hash code
return hash;
}
// WARNING:
// The displaced header is strictly immutable.
// It can NOT be changed in ANY cases. So we have
// to inflate the header into heavyweight monitor
// even the current thread owns the lock. The reason
// is the BasicLock (stack slot) will be asynchronously
// read by other threads during the inflate() function.
// Any change to stack may not propagate to other threads
// correctly.
}
// Inflate the monitor to set hash code
monitor = ObjectSynchronizer::inflate(Self, obj);
// Load displaced header and check it has hash code
mark = monitor->header();
assert (mark->is_neutral(), "invariant") ;
hash = mark->hash();
if (hash == 0) {
hash = get_next_hash(Self, obj);
temp = mark->copy_set_hash(hash); // merge hash code into header
assert (temp->is_neutral(), "invariant") ;
test = (markOop) Atomic::cmpxchg_ptr(temp, monitor, mark);
if (test != mark) {
// The only update to the header in the monitor (outside GC)
// is install the hash code. If someone add new usage of
// displaced header, please update this code
hash = test->hash();
assert (test->is_neutral(), "invariant") ;
assert (hash != 0, "Trivial unexpected object/monitor header usage.");
}
}
// We finally get the hash
return hash;
}
其中,调用的核心方法是get_next_hash()
static inline intptr_t get_next_hash(Thread * Self, oop obj) {
intptr_t value = 0 ;
if (hashCode == 0) {
// This form uses an unguarded global Park-Miller RNG,
// so it's possible for two threads to race and generate the same RNG.
// On MP system we'll have lots of RW access to a global, so the
// mechanism induces lots of coherency traffic.
value = os::random() ;
} else
if (hashCode == 1) {
// This variation has the property of being stable (idempotent)
// between STW operations. This can be useful in some of the 1-0
// synchronization schemes.
intptr_t addrBits = cast_from_oop<intptr_t>(obj) >> 3 ;
value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom ;
} else
if (hashCode == 2) {
value = 1 ; // for sensitivity testing
} else
if (hashCode == 3) {
value = ++GVars.hcSequence ;
} else
if (hashCode == 4) {
value = cast_from_oop<intptr_t>(obj) ;
} else {
// Marsaglia's xor-shift scheme with thread-specific state
// This is probably the best overall implementation -- we'll
// likely make this the default in future releases.
unsigned t = Self->_hashStateX ;
t ^= (t << 11) ;
Self->_hashStateX = Self->_hashStateY ;
Self->_hashStateY = Self->_hashStateZ ;
Self->_hashStateZ = Self->_hashStateW ;
unsigned v = Self->_hashStateW ;
v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)) ;
Self->_hashStateW = v ;
value = v ;
}
value &= markOopDesc::hash_mask;
if (value == 0) value = 0xBAD ;
assert (value != markOopDesc::no_hash, "invariant") ;
TEVENT (hashCode: GENERATE) ;
return value;
}
根据hashcode值,可以分为以下方法:
0- 随机生成值
1- 获取对象的实际内存地址
2- 返回1,用于灵敏度测试
3- 自增 4- 第二种的变种
5- xorshift算法,有兴趣可以看一下https://en.wikipedia.org/wiki/Xorshift,相对比较复杂,也可以看下知乎大佬解释https://www.zhihu.com/question/27951358
jdk1.8前,默认hashcode为0,可通过globals.hpp文件查看,调用第一个方法,随机生成hashcode
globals.hpp源码路径:hotspot\src\share\vm\runtime\globals.hpp
product(intx, hashCode, 0,“(Unstable) select hashCode generation algorithm”)
jdk1.8后,默认为5,使用xorshift 算法生成hashcode
product(intx, hashCode, 5,“(Unstable) select hashCode generation algorithm”)
同时可以通过-XX:hashCode=N来修改jvm默认值来修改调用方法
查看jvm默认值java -XX:+PrintFlagsFinal -version
Object.hashCode底层实现
通过查看openjdk源码Object.c
Object.c源码路径:jdk-935758609767\src\share\native\java\lang\Object.c
static JNINativeMethod methods[] = {
{"hashCode", "()I", (void *)&JVM_IHashCode},
{"wait", "(J)V", (void *)&JVM_MonitorWait},
{"notify", "()V", (void *)&JVM_MonitorNotify},
{"notifyAll", "()V", (void *)&JVM_MonitorNotifyAll},
{"clone", "()Ljava/lang/Object;", (void *)&JVM_Clone},
};
发现还是和System.identityHashCode一样都是调用JVM_IHashCode方法。
总结
当hashCode()未被重写时,System.identityHashCode()和hashCode()返回值相同,都是调用底层JVM_IHashCode方法
当hashCode()被重写,则System.identityHashCode()和hashCode()返回值不同。hashCode()返回重写结果,System.identityHashCode()返回底层生成hashcode