leetcode - 1895. Largest Magic Square

Description

A k x k magic square is a k x k grid filled with integers such that every row sum, every column sum, and both diagonal sums are all equal. The integers in the magic square do not have to be distinct. Every 1 x 1 grid is trivially a magic square.

Given an m x n integer grid, return the size (i.e., the side length k) of the largest magic square that can be found within this grid.

Example 1:
在这里插入图片描述

Input: grid = [[7,1,4,5,6],[2,5,1,6,4],[1,5,4,3,2],[1,2,7,3,4]]
Output: 3
Explanation: The largest magic square has a size of 3.
Every row sum, column sum, and diagonal sum of this magic square is equal to 12.
- Row sums: 5+1+6 = 5+4+3 = 2+7+3 = 12
- Column sums: 5+5+2 = 1+4+7 = 6+3+3 = 12
- Diagonal sums: 5+4+3 = 6+4+2 = 12

Example 2:

在这里插入图片描述

Input: grid = [[5,1,3,1],[9,3,3,1],[1,3,3,8]]
Output: 2

Constraints:

m == grid.length
n == grid[i].length
1 <= m, n <= 50
1 <= grid[i][j] <= 10^6

Solution

Simulation, use a helper function to see if the row sums, column sums and diagonal sums are the same.

Time complexity: o ( m ∗ n ∗ n ) o(m*n*n) o(mnn)
Space complexity: o ( m ∗ n ) o(m*n) o(mn)

Code

class Solution:
    def largestMagicSquare(self, grid: List[List[int]]) -> int:
        def is_magic_square(x: int, y: int, size: int) -> bool:
            row_sums = [sum(grid[row][y: y + size]) for row in range(x, x + size)]
            col_sums = []
            for col in range(y, y + size):
                col_sums.append(0)
                for row in range(x, x + size):
                    col_sums[-1] += grid[row][col]
            diag_sums = [0, 0]
            for row in range(x, x + size):
                diag_sums[0] += grid[row][row - (x - y)]
                diag_sums[1] += grid[row][x + y + size - row - 1]
            return all(item == row_sums[0] for item in row_sums + col_sums + diag_sums)
        res = 1
        m, n = len(grid), len(grid[0])
        for i in range(m):
            for j in range(n):
                for size in range(2, 1 + min(m - i, n - j)):
                    if is_magic_square(i, j, size):
                        res = max(res, size)
        return res
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值