leetcode - 172. Factorial Trailing Zeroes

Description

Given an integer n, return the number of trailing zeroes in n!.

Note that n! = n * (n - 1) * (n - 2) * ... * 3 * 2 * 1.

Example 1:

Input: n = 3
Output: 0
Explanation: 3! = 6, no trailing zero.

Example 2:

Input: n = 5
Output: 1
Explanation: 5! = 120, one trailing zero.

Example 3:

Input: n = 0
Output: 0

Constraints:

0 <= n <= 10^4

Follow up: Could you write a solution that works in logarithmic time complexity?

Solution

Didn’t know how to solve until I saw the solution…

For the trailing zeroes, 2x5 makes a trailing zero. Since 2 appears more frequently than 5, the trailing zeroes depend solely on the number of 5 that appears in the factorial of n. For numbers like 25, it contains two 5s, so actually we need to find the number of multiple of 5, that is: 5, 5x5, 5x5x5, 5x5x5x5, …

Time complexity: o ( log ⁡ n ) o(\log n) o(logn), note the log is based on 5.
Space complexity: o ( 1 ) o(1) o(1)

Code

class Solution:
    def trailingZeroes(self, n: int) -> int:
        return 0 if n == 0 else n // 5 + self.trailingZeroes(n // 5)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值