js解决高频率点击带来的定时器问题

可以在点击函数里面先设置clearInterval(timer),然后再设置定时器timer = setInterval(...........);

下面的例子就成功的解决了这个问题:

//一个计时器

<!DOCTYPE html>
<html lang="en">
<head>
	<meta charset="UTF-8">
	<title>Document</title>
	<style type="text/css">
    section {
      width: 400px;
      height: 200px;
      margin: 50px auto;
    }

    .text {
      width: 300px;
      height: 50px;
      margin: 20px auto;
      text-align: center;
      line-height: 50px;
      font-size: 16px;
      color: green;
      border: 1px solid green;
    }

    .btn {
      width: 200px;
      height: 30px;
      margin: 20px auto;
      display: flex;
      flex-direction: row;
      justify-content: space-between;
    }

    button {
      cursor: pointer;
    }
  </style>
</head>
<body>
	<section>
	  <div class="text" id="word"></div>
	  <div class="btn">
	    <button id="btn-start">开始</button>
	    <button id="btn-stop">暂停</button>
	    <button id="btn-reset">重置</button>
	  </div>
	</section>
  <script type="text/javascript">
    let timer = null;
    let h = 0, m = 0, s = 0, ms = 0;
    let str = `00时00分00秒000毫秒`;
    let word = getId('word');
    word.innerText = str;
    function getId(id) {
      return typeof(id) === 'string' ? document.getElementById(id) : id;
    }
    
    function timeAdd() {
      ms += 50;
      if (ms === 1000) {
        s += 1;
        ms = 0;
      };
      if (s === 60) {
        m += 1;
        s = 0;
      };
      if (m === 60) {
        h += 1;
        m = 0;
      };
      str = `${one(h)}时${one(m)}分${one(s)}秒${two(ms)}毫秒`;
      word.innerText = str;
    }

    function start() {
      clearInterval(timer);
      timer = setInterval(timeAdd, 50);
    }
    function stop() {
      clearInterval(timer);
    }
    function reset() {
    	clearInterval(timer);
      str = `00时00分00秒000毫秒`;
      word.innerText = str;
    }
    getId('btn-start').onclick = start;
    getId('btn-stop').onclick = stop;
    getId('btn-reset').onclick = reset;
    function one(n) {
      if (n < 10) {
        return '0' + n;
      } else {
        return '' + n;
      }
    }
    function two(m) {
      if (m < 100 && m >= 10) {
        return '0' + m;
      } else if (m < 10) {
        return '00' + m;
      } else {
        return m;
      }
    }
  </script>
</body>
</html>

 

DQN(Deep Q-Network)是一种使用深度神经网络实现的强化学习算法,用于解决离散动作空间的问题。在PyTorch中实现DQN可以分为以下几个步骤: 1. 定义神经网络:使用PyTorch定义一个包含多个全连接层的神经网络,输入为状态空间的维度,输出为动作空间的维度。 ```python import torch.nn as nn import torch.nn.functional as F class QNet(nn.Module): def __init__(self, state_dim, action_dim): super(QNet, self).__init__() self.fc1 = nn.Linear(state_dim, 64) self.fc2 = nn.Linear(64, 64) self.fc3 = nn.Linear(64, action_dim) def forward(self, x): x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x ``` 2. 定义经验回放缓存:包含多条经验,每条经验包含一个状态、一个动作、一个奖励和下一个状态。 ```python import random class ReplayBuffer(object): def __init__(self, max_size): self.buffer = [] self.max_size = max_size def push(self, state, action, reward, next_state): if len(self.buffer) < self.max_size: self.buffer.append((state, action, reward, next_state)) else: self.buffer.pop(0) self.buffer.append((state, action, reward, next_state)) def sample(self, batch_size): state, action, reward, next_state = zip(*random.sample(self.buffer, batch_size)) return torch.stack(state), torch.tensor(action), torch.tensor(reward), torch.stack(next_state) ``` 3. 定义DQN算法:使用PyTorch定义DQN算法,包含训练和预测两个方法。 ```python class DQN(object): def __init__(self, state_dim, action_dim, gamma, epsilon, lr): self.qnet = QNet(state_dim, action_dim) self.target_qnet = QNet(state_dim, action_dim) self.gamma = gamma self.epsilon = epsilon self.lr = lr self.optimizer = torch.optim.Adam(self.qnet.parameters(), lr=self.lr) self.buffer = ReplayBuffer(100000) self.loss_fn = nn.MSELoss() def act(self, state): if random.random() < self.epsilon: return random.randint(0, action_dim - 1) else: with torch.no_grad(): q_values = self.qnet(state) return q_values.argmax().item() def train(self, batch_size): state, action, reward, next_state = self.buffer.sample(batch_size) q_values = self.qnet(state).gather(1, action.unsqueeze(1)).squeeze(1) target_q_values = self.target_qnet(next_state).max(1)[0].detach() expected_q_values = reward + self.gamma * target_q_values loss = self.loss_fn(q_values, expected_q_values) self.optimizer.zero_grad() loss.backward() self.optimizer.step() def update_target_qnet(self): self.target_qnet.load_state_dict(self.qnet.state_dict()) ``` 4. 训练模型:使用DQN算法进行训练,并更新目标Q网络。 ```python dqn = DQN(state_dim, action_dim, gamma=0.99, epsilon=1.0, lr=0.001) for episode in range(num_episodes): state = env.reset() total_reward = 0 for step in range(max_steps): action = dqn.act(torch.tensor(state, dtype=torch.float32)) next_state, reward, done, _ = env.step(action) dqn.buffer.push(torch.tensor(state, dtype=torch.float32), action, reward, torch.tensor(next_state, dtype=torch.float32)) state = next_state total_reward += reward if len(dqn.buffer.buffer) > batch_size: dqn.train(batch_size) if step % target_update == 0: dqn.update_target_qnet() if done: break dqn.epsilon = max(0.01, dqn.epsilon * 0.995) ``` 5. 测试模型:使用训练好的模型进行测试。 ```python total_reward = 0 state = env.reset() while True: action = dqn.act(torch.tensor(state, dtype=torch.float32)) next_state, reward, done, _ = env.step(action) state = next_state total_reward += reward if done: break print("Total reward: {}".format(total_reward)) ``` 以上就是在PyTorch中实现DQN强化学习的基本步骤。需要注意的是,DQN算法中还有很多细节和超参数需要调整,具体实现过程需要根据具体问题进行调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值