Machine Learning ex4

本文详细介绍了如何实现一个用于两层神经网络分类任务的成本函数。该函数不仅包括前向传播计算预测输出的过程,还涉及使用反向传播算法计算权重梯度,并加入了正则化项以避免过拟合。
function [J grad] = nnCostFunction(nn_params, ...
                                   input_layer_size, ...
                                   hidden_layer_size, ...
                                   num_labels, ...
                                   X, y, lambda)
%NNCOSTFUNCTION Implements the neural network cost function for a two layer
%neural network which performs classification
%   [J grad] = NNCOSTFUNCTON(nn_params, hidden_layer_size, num_labels, ...
%   X, y, lambda) computes the cost and gradient of the neural network. The
%   parameters for the neural network are "unrolled" into the vector
%   nn_params and need to be converted back into the weight matrices. 

%   The returned parameter grad should be a "unrolled" vector of the
%   partial derivatives of the neural network.
%


% Reshape nn_params back into the parameters Theta1 and Theta2, the weight matrices
% for our 2 layer neural network
Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ...
                 hidden_layer_size, (input_layer_size + 1));


Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ...
                 num_labels, (hidden_layer_size + 1));


% Setup some useful variables
m = size(X, 1);
         
% You need to return the following variables correctly 
J = 0;
Theta1_grad = zeros(size(Theta1));
Theta2_grad = zeros(size(Theta2));


% ====================== YOUR CODE HERE ======================
% Instructions: You should complete the code by working through the
%               following parts.
%
% Part 1: Feedforward the neural network and return the cost in the
%         variable J. After implementing Part 1, you can verify that your
%         cost function computation is correct by verifying the cost
%         computed in ex4.m


% Part 2: Implement the backpropagation algorithm to compute the gradients
%         Theta1_grad and Theta2_grad. You should return the partial derivatives of
%         the cost function with respect to Theta1 and Theta2 in Theta1_grad and
%         Theta2_grad, respectively. After implementing Part 2, you can check
%         that your implementation is correct by running checkNNGradients
%
%         Note: The vector y passed into the function is a vector of labels
%               containing values from 1..K. You need to map this vector into a 
%               binary vector of 1's and 0's to be used with the neural network
%               cost function.
%
%         Hint: We recommend implementing backpropagation using a for-loop
%               over the training examples if you are implementing it for the 
%               first time.
%
% Part 3: Implement regularization with the cost function and gradients.
%
%         Hint: You can implement this around the code for
%               backpropagation. That is, you can compute the gradients for
%               the regularization separately and then add them to Theta1_grad
%               and Theta2_grad from Part 2.
%


K = num_labels;
X = [ones(m,1) X]; % 第一层 m*401
delta1_accum = zeros(size(Theta1));
delta2_accum = zeros(size(Theta2));
z_2 = X * Theta1'; % m*25
a_2 = sigmoid(z_2); % second layer m* hidden_layersize
z_3 = [ones(size(a_2,1),1),a_2] * Theta2'; 
a_3 = sigmoid(z_3); % third layer m*K
 
% J = -1/m * (y' * log(a_3) + (1-y')*log(1-a_3));  
% grand = 1/m * X' * (a_3 - y);  m*1


for i = 1:m
    y_newi = zeros(1,K); % initial y as a matrix
    y_newi(y(i)) = 1;    % when y = 5, set y(i) = 1
    J = J - 1/m * (sum(y_newi * log(a_3(i,:)')) + sum((1-y_newi)*log(1-a_3(i,:)')));
    
   delta_3 = a_3(i,:) - y_newi; % delta_3 is a 1*k
   delta_2 = delta_3 * Theta2 .* sigmoidGradient([1 z_2(i,:)]);  %delta_2 is 
   delta_2 = delta_2(2:end);
%    
    delta2_accum = delta2_accum + delta_3' * [1 a_2(i,:)];
    delta1_accum = delta1_accum + delta_2' * X(i,:);
end;


    Theta2_grad = 1/m * delta2_accum;
    Theta1_grad = 1/m * delta1_accum;
    
    J = J + lambda /(2*m) * (sum(sum(Theta2(:,2:hidden_layer_size+1).^2))+ ...
         sum(sum(Theta1(:,2:end).^2)));
    
    Theta2_grad(:,2:hidden_layer_size+1) = Theta2_grad(:,2:hidden_layer_size+1)+...
         lambda/m * Theta2(:,2:hidden_layer_size+1);
    
    Theta1_grad(:,2:end) = Theta1_grad(:,2:end) + lambda/m * Theta1(:,2:end);


% -------------------------------------------------------------


% =========================================================================


% Unroll gradients
grad = [Theta1_grad(:) ; Theta2_grad(:)];




end


应该是没什么问题了,还是要一步一步根据题目要求来检查才好发现问题,维度是最容易出问题的地方。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值