EMD方法基本基本知识

EMD
经验模态分解(Empirical Mode Decomposition,简称EMD))方法被认为是2000年来以傅立叶变换为基础的线性和稳态频谱分析的一个重大突破,该方法是依据数据自身的时间尺度特征来进行信号分解,无须预先设定任何基函数。这一点与建立在先验性的谐波基函数和小波基函数上的傅里叶分解与小波分解方法具有本质性的差别。正是由于这样的特点,EMD 方法在理论上可以应用于任何类型的信号的分解, 因而在处理非平稳及非线性数据上,具有非常明显的优势,适合于分析非线性、非平稳信号序列,具有很高的信噪比。所以,EMD方法一经提出就在不同的工程领域得到了迅速有效的应用,例如用在海洋、大气、天体观测资料与地震记录分析、机械故障诊断、密频动力系统的阻尼识别以及大型土木工程结构的模态参数识别方面。
该方法的关键是经验模式分解,它能使复杂信号分解为有限个本征模函数(Intrinsic Mode Function,简称IMF),所分解出来的各IMF分量包含了原信号的不同时间尺度的局部特征信号。经验模态分解法能使非平稳数据进行平稳化处理,然后进行希尔伯特变换获得时频谱图,得到有物理意义的频率。与短时傅立叶变换、小波分解等方法相比,这种方法是直观的、直接的、后验的和自适应的,因为基函数是由数据本身所分解得到。由于分解是基于信号序列时间尺度的局部特性,因此具有自适应性。
2基本原理
对数据信号进行EMD分解就是为了获得本征模函数,因此,在介绍EMD分析方法的具体过程之前,有必要先介绍EMD分解过程中所涉及的基本概念的定义:本征模函数,这是掌握EMD方法的基础。
本征模函数
在物理上,如果瞬时频率有意义,那么函数必须是对称的,局部均值为零,并且具有相同的过零点和极值点数目。在此基础上,NordneE.Huang等人提出了本征模函数(Intrinsic Mode Function,简称IMF)的概念。本征模函数任意一点的瞬时频率都是有意义的。Huang等人认为任何信号都是由若干本征莫函数组成,任何时候,一个信号都可以包含若干个本征模函数,如果本征模函数之间相互重叠,便形成复合信号。EMD分解的目的就是为了获取本征模函数,然后再对各本征模函数进行希尔伯特变换,得到希尔伯特谱。
Huang认为,一个本征模函数必须

评论 32
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ncst

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值