课程介绍
了解完书生·浦语InternLM2大模型实战–基本认知 后,就可以做 Homework-demo 啦
Day01的作业基本是按照GitHub链接完成 GitHub – 轻松玩转书生·浦语大模型趣味 Demo
作业截图如下
基本作业是实战第一部分
进阶作业的后两个是实战的的第三、四部分
我把进阶作业的"熟悉hugging下载功能"也放在实战第二部分吧
下面就按 趣味 Demo 的流程来做官网 InternLM-studio
1.实战部署 InternLM2-Chat-1.8B 模型
部署 InternLM2-Chat-1.8B 模型进行智能对话,生成300字小故事
1.2 配置环境
studio-conda -o internlm-base -t demo
# 与 studio-conda 等效的配置方案
conda create -n demo python==3.10 -y
# conda activate demo
# conda install pytorch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 pytorch-cuda=11.7 -c pytorch -c nvidia
pip install huggingface-hub==0.17.3 transformers==4.34 psutil==5.9.8 accelerate==0.24.1 streamlit==1.32.2 matplotlib==3.8.3 modelscope==1.9.5 sentencepiece==0.1.99
1.2 下载 InternLM2-Chat-1.8B 模型
按路径创建文件夹,并进入到对应文件目录中:
mkdir -p /root/demo
touch /root/demo/cli_demo.py
touch /root/demo/download_mini.py
cd /root/demo
进入 demo 文件夹
编辑 /root/demo/download_mini.py
文件,复制代码:
import os
from modelscope.hub.snapshot_download import snapshot_download
# 创建保存模型目录
os.system("mkdir /root/models")
# save_dir是模型保存到本地的目录
save_dir="/root/models"
snapshot_download("Shanghai_AI_Laboratory/internlm2-chat-1_8b",
cache_dir=save_dir,
revision='v1.1.0')
执行命令,下载模型参数文件:
python /root/demo/download_mini.py
实力效果如下:
1.3 运行 cli_demo
双击打开 /root/demo/cli_demo.py
文件,复制以下代码:
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name_or_path = "/root/models/Shanghai_AI_Laboratory/internlm2-chat-1_8b"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True, device_map