void OSStatInit (void)

本文介绍uCOS-II操作系统中OSStatInit()函数的作用及实现原理,该函数通过一系列延时操作来确定系统的最大空闲计数,进而计算CPU利用率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 #if OS_TASK_STAT_EN > 0
void  OSStatInit (void)
{
#if OS_CRITICAL_METHOD == 3                      /* Allocate storage for CPU status register           */
    OS_CPU_SR  cpu_sr;
#endif   
   
   
    OSTimeDly(2);                                /* Synchronize with clock tick                        */
    OS_ENTER_CRITICAL();
    OSIdleCtr    = 0L;                           /* Clear idle counter                                 */
    OS_EXIT_CRITICAL();
    OSTimeDly(OS_TICKS_PER_SEC / 10);            /* Determine MAX. idle counter value for 1/10 second  */
    OS_ENTER_CRITICAL();
    OSIdleCtrMax = OSIdleCtr;                    /* Store maximum idle counter count in 1/10 second    */
    OSStatRdy    = TRUE;
    OS_EXIT_CRITICAL();
}
#endif

;在OSStatInit一开始延迟时间为2时钟节拍里:第一在就绪表中删除掉当前任务的就绪标志,这个当前任务也就是调用OSStatInt( )的用户编写的TaskStart()任务,这是用户创建的优先级最高的任务;第二令OSTCBDly = ticks也就是这个任务要延迟ticks所代表的时间;第三,调用 OS_Sched( ),进行一次任务调度,在任务调度里找出优先级最高的任务,并进行任务切换,切换到现在的具有最高优先级的任务,使其运行。此时在任务调度的时候,TaskStart()任务又重新处于就绪状态,此时程序从OSTimeDly(2)中返回,接着执行下面下面的程序。执行完OSIdleCtr    = 0L;   后,又进入一个延时程序OSTimeDly(OS_TICKS_PER_SEC / 10);  ,本程序是又延迟了100毫秒,在这100毫秒中,TaskStart()任务处于等待状态,因此在这100毫秒中执行的是Idle任务。Idle任务会不断给OSIdelCtr计数,从而100毫秒后OSIdelCtr记录的就是100毫秒内被增加的最大次数(在这一秒中没有其它任务高于Idle任务,所以结果是最大的)。100毫秒延迟结束后。TaskStart()任务重新就绪,获得cpu使用权,就执行OSIdleCtrMax = OSIdleCtr;    OSStatRdy    = TRUE;此后程序结束。

;OSStatInit一开始延迟时间为2时钟节拍,用于保持与系统时钟的同步,因为延迟之后调用的第一个语句为“OSIdelCtr=0”,基本不用花费系统时间,然后就进入第二个语句OSTimeDly(OS_TICKS_PER_SEC);   相当于再次延迟1s;在这延迟的一秒中,Idle任务会不断给OSIdelCtr计数,从而1s后OSIdelCtr记录的就是1s内被增加的最大次数(在这一秒中没有其它任务高于Idle任务,所以结果是最大的)。

在建立其他任务之前,必须调用OSStatInit()来确定用户的PC有多快。在一开始,OSStatInit()就将自身延时了两个时钟节拍,这样它就可以与时钟节拍中断同步。因此,OSStatInit()必须在时钟节拍启动之后调用;否则,用户的应用程序就会崩溃。当µC/OS-II调用OSStatInit()时,一个32位的计数器OSIdleCtr被清为0 ,并产生另一个延时,这个延时使OSStatInit()挂起。此时,uCOS-II没有别的任务可以执行,它只能执行空闲任务(µC/OS-II的内部任务)。空闲任务是一个无线的循环,它不断的递增OSIdleCtr。1秒以后,uCOS-II重新开始OSStatInit(),并且将OSIdleCtr保存在OSIdleMax中。所以OSIdleMax是OSIdleCtr所能达到的最大值。而当用户再增加其他应用代码时,空闲任务就不会占用那样多的CPU时间。OSIdleCtr不可能达到那样多的记数,如果用户程序每秒抚慰一次OSIdleCtr()。CPU利用率的计算由µC/OS-II 中的OSStatTask()函数来完成,这个任务每秒执行一次。而当OSStatRdy置为TRUE表示µC/OS-II将统计CPU的利用率。

OSStatInit()将返回到TaskStart()。所有任务可以都由TaskStart()中建立,由于TaskStart()的优先级为0(最高),新任务建立后不进行任务调度。当所有任务都建立完成后,TaskStart()将进入无限循环之中。

做嵌入式应用时,用户必须在第一个任务中打开时钟节拍中断。

void ARMStartTimer(void)
{
 //autoreload and start  m
 rTCON = 0x9;  
}
 

#include <includes.h> #include "rf_cfg.h" #include "sysCfg.h" #include "udp_igmp.h" /****************************************************************************** * EXTERN DECALARATION */ #if APP_CFG_SHELL_EN extern void shellStart(void); #endif #if APP_CFG_LWIP_EN extern void ETH_BSP_Config(void); extern void ETH_BSP_Config2(void); extern void ETH_IRQHandler(void); void ETH_CheckLinkSt(void); extern void netInit(void); extern void netConfigRestore(void); /* network agent task init function */ extern void rfNetAgentInit(void); #endif #if APP_CFG_HTTP_EN extern void webServerInit(void); #endif extern void MBP_init(void); /****************************************************************************** * LOCAL VARIABLES */ /* flag to keep system working */ INT8S g_keepon = 1; /* ----------------- APPLICATION GLOBALS ------------------ */ static OS_STK AppStartStk[APP_START_STACKSIZE]; /****************************************************************************** * FUNCTION PROTOTYPES */ static void AppTaskCreate(void) { /* Initialize serial ports run MODBUS RTU protocol */ MBP_init(); #if APP_CFG_HTTP_EN /* Initialize webserver demo */ webServerInit(); #endif #if APP_CFG_SHELL_EN shellStart(); #endif #if APP_CFG_LWIP_EN /* start network manager agent task */ rfNetAgentInit(); ReaderAgentInit(); #endif #if LWIP_IGMP igmp_demo_init(); #endif } static void AppTaskStart(void *p_arg) { static CPU_INT08U cDealyCount; /* not used, let compiler happy */ p_arg = p_arg; BSP_CPU_TickInit(); // Start Tick Initialization /* turn off all leds */ BSP_LED_Off(LED_ALL); #ifdef USE_RTC rtcInit(); // Init RTC facility #endif CPU_IntEn(); #if (OS_TASK_STAT_EN > 0) OSStatInit(); // Determine CPU capacity #endif #if APP_CFG_LWIP_EN /* init ethernet: step 1 */ ETH_BSP_Config(); #endif #if APP_CFG_SERIAL_EN /* Initialize Serial communication for application ... */ BSP_Ser_Init(APP_CFG_SERIAL_RATE); #endif UartInit_P6(115200);//读写器的波特率 /* only from here on, CAN we use printf to print out messages */ printf("\nInitializing file cabinet management system v%d.%d\n", VER_MAJOR, VER_MINOR); printf("Compiled on %s %s\n", __TIME__, __DATE__); /* place other hardware initialization here and before ethernet step 2 * configuration which will cost much time. */ #if APP_CFG_LWIP_EN /* init ethernet: step 2 */ printf("Init ethernet interface..."); ETH_BSP_Config2(); BSP_IntVectSet(BSP_INT_ID_ETH, ETH_IRQHandler); BSP_IntEn(BSP_INT_ID_ETH); printf("done\n"); /* Initilaize the LwIP stack */ netInit(); #endif usrCfgInit(); #if APP_CFG_LWIP_EN netConfigRestore(); #endif printf("Start independant watchdog\n"); BSP_IWDG_Start(); AppTaskCreate(); // Create application Tasks BSP_IWDG_Reload(); // feed watchdog while (g_keepon) { /* Task body, always written as an infinite loop. */ cDealyCount++; BSPAlarmCtrl(); if(cDealyCount >= 5) //500ms { cDealyCount = 0; #if APP_CFG_LWIP_EN ETH_CheckLinkSt(); #endif BSP_IWDG_Reload(); // feed watchdog BSP_LED_Toggle(1); BSPDoorOpen(); CheckTCPIsLinked(); reNewScanTime(); sysLedCtrl(); } // BSP_OS_SemPost(&g_SemRead); OSTimeDlyHMSM(0, 0, 0, 100);//READ_CHECK_INTERVAL_TIME_MS } } int main(void) { #if (OS_TASK_NAME_EN > 0) CPU_INT08U err; #endif BSP_IntDisAll(); /* Disable all interrupts. */ BSP_Init(); /* Init BSP fncts. */ /* Initialize system config record */ sysCfgInit(); /* locate vector table */ #ifdef VECT_TAB_RAM NVIC_SetVectorTable(NVIC_VectTab_RAM, 0x0); #else NVIC_SetVectorTable(NVIC_VectTab_FLASH, getSysVectOffset()); //NVIC_SetVectorTable(NVIC_VectTab_FLASH, 0x0); #endif OSInit(); /* Initialize "uC/OS-II, The Real-Time Kernel" */ OSTaskCreateExt((void (*)(void *)) AppTaskStart, /* Create the start task */ (void *) 0, (OS_STK *)&AppStartStk[APP_START_STACKSIZE - 1], (INT8U ) APP_START_TASK_PRIO, (INT16U ) APP_START_TASK_PRIO, (OS_STK *)&AppStartStk[0], (INT32U ) APP_START_STACKSIZE, (void *) 0, (INT16U )(OS_TASK_OPT_STK_CHK | OS_TASK_OPT_STK_CLR)); #if (OS_TASK_NAME_EN > 0) OSTaskNameSet(APP_START_TASK_PRIO, "tStart", &err); #endif OSStart(); /* Start multitasking (i.e. give control to uC/OS-II) */ }详细解释一下代码,并且需要讲一下对ucos2的理解,中断等概念,以及在项目中比Linux好的原因
最新发布
06-20
/* ********************************************************************************************************* * uC/OS-II * The Real-Time Kernel * * ROUTINE #6 ********************************************************************************************************* */ #define _CRT_SECURE_NO_WARNINGS #include "includes.h" #include "app_linked_list.h" //#include "app_queue.h" /* ********************************************************************************************************* * CONSTANTS ********************************************************************************************************* */ #define TASK_STK_SIZE 512 /* Size of each task's stacks (# of WORDs) */ /* 任务优先级 */ #define TASK_START_PRIO 0 //起始任务具有最高优先级 #define TASK_1_PRIO 10 //5个用户任务 #define TASK_2_PRIO 11 #define TASK_3_PRIO 12 #define TASK_4_PRIO 13 #define TASK_5_PRIO 14 #define TASK_DISP_PRIO 25 //负责显示用户任务信息 #define TASK_CLK_PRIO 30 //负责显示系统时间 任务数 CPU利用率 //保存被查询任务的相关信息 typedef struct { INT32U MyTCBDly; INT8U MyTCBStat; INT8U MyTCBPrio; INT32U MyTCBCtxSwCtr; INT32U MyTCBCycles; } TASK_USER_DATA; /* ********************************************************************************************************* * VARIABLES ********************************************************************************************************* */ OS_STK TaskStartStk[TASK_STK_SIZE]; /* Startup task stack */ OS_STK Task1Stk[TASK_STK_SIZE]; /* MyTask1 task stack */ OS_STK Task2Stk[TASK_STK_SIZE]; /* MyTask2 task stack */ OS_STK Task3Stk[TASK_STK_SIZE]; /* MyTask3 task stack */ OS_STK Task4Stk[TASK_STK_SIZE]; /* MyTask4 task stack */ OS_STK Task5Stk[TASK_STK_SIZE]; /* MyTask5 task stack */ OS_STK TaskClkStk[TASK_STK_SIZE]; /* Clock task stack */ OS_STK TaskDispStk[TASK_STK_SIZE]; /* Display task stack */ FP32 AppCPUUsage; //第2种CPU利用率 INT32U time_idle; //用来计算第2种CPU利用率 OS_TCB tcb_copy; //用来复制被查询任务的TCB TASK_USER_DATA TaskUserData[5]; //存放5个用户任务的查询信息 APP_TCB AppTCBTbl[128]; //全局APP_TCB数组 含128个块 仿真OSTCBTbl APP_TCB *AppTCBFreeList; //空闲APP_TCB链头 APP_TCB *AppTCBPrioTbl[64]; //对应64个优先级的指针数组 用来连接APP_TCB双向链表 区别于OSTCBPrioTbl //OS_EVENT *Mutex; //定义互斥信号量 OS_EVENT *SempFull; //定义Full信号量 OS_EVENT *MsgQ; //定义消息队列事件 void *MsgQTbl[20]; //定义可最多容纳20个消息的队列 元素是指向消息内容的指针 OS_MEM *pMem; //定义内存控制块指针 INT8U myMem[10][32]; //定义内存分区 含10个存储块 每块32个字节 OS_MEM_DATA mem_data; //用于查询内存块信息 /* ********************************************************************************************************* * FUNCTION PROTOTYPES ********************************************************************************************************* */ void TaskStart(void *data); void MyTask1(void *data); void MyTask2(void *data); void MyTask3(void *data); void MyTask4(void *data); void MyTask5(void *data); void TaskClock(void *data); void TaskDisp(void *data); void UpdateTaskData(INT8U id); void DispTaskData(INT8U id); void InitAppTCBList (void); int AppTCBInit (INT8U prio, INT32U slice); void AppSchedRR (INT8U prio); void AppSchedRR2 (INT8U prio); /*$PAGE*/ /* ********************************************************************************************************* * MAIN ********************************************************************************************************* */ int main (void) { INT8U err; PC_DispClrScr(DISP_BGND_BLACK); /* Clear the screen */ OSInit(); /* Initialize uC/OS-II */ InitAppTCBList(); //初始化所有APP_TCB块 构建仿真空闲链 time_idle = 0; PC_ElapsedInit(); /* ToDo: Create semaphores, mailboxes etc. here */ SempFull = OSSemCreate(0); MsgQ = OSQCreate(&MsgQTbl[0], 20); //创建消息队列 //创建内存分区 OSTaskCreate(TaskStart, (void *)0, &TaskStartStk[TASK_STK_SIZE - 1], TASK_START_PRIO); /* Create the startup task */ OSStart(); /* Start multitasking */ return 0; } /*$PAGE*/ /* ********************************************************************************************************* * STARTUP TASK ********************************************************************************************************* */ void TaskStart (void *pdata) { char s[40]; INT16S key; pdata = pdata; /* Prevent compiler warning */ /* Setup fixed part of screen */ PC_DispStr( 0, 0, " 实时多任务操作系统uC/OS-II ", DISP_FGND_WHITE + DISP_BGND_RED); PC_DispStr( 0, 1, " 版权声明: ", DISP_FGND_BLACK + DISP_BGND_LIGHT_GRAY); PC_DispStr( 0, 2, " 1.内核源码由Jean J. Labrosse提供 ", DISP_FGND_BLACK + DISP_BGND_LIGHT_GRAY); PC_DispStr( 0, 3, " 2.x86-Win32平台移植由Werner Zimmermann提供 ", DISP_FGND_BLACK + DISP_BGND_LIGHT_GRAY); PC_DispStr( 0, 4, " ", DISP_FGND_BLACK + DISP_BGND_LIGHT_GRAY); PC_DispStr( 0, 5, " ", DISP_FGND_BLACK + DISP_BGND_LIGHT_GRAY); PC_DispStr( 0, 6, " CH6 动态内存分配 ", DISP_FGND_BLACK + DISP_BGND_LIGHT_GRAY); PC_DispStr( 0, 7, " APP_TCB OS_MEM_DATA ", DISP_FGND_CYAN + DISP_BGND_LIGHT_GRAY); PC_DispStr( 0, 8, " UserTask 上台次数 Status 上台间隔 TOT Cur_ID addr 总块数 每块大小", DISP_FGND_BLACK + DISP_BGND_LIGHT_GRAY); PC_DispStr( 0, 9, "--------- -------- -------- -------- ----------- --------------------------", DISP_FGND_BLACK + DISP_BGND_LIGHT_GRAY); PC_DispStr( 0, 10, " MyTask1 ", DISP_FGND_BLACK + DISP_BGND_LIGHT_GRAY); PC_DispStr( 0, 11, " MyTask2 ", DISP_FGND_BLACK + DISP_BGND_LIGHT_GRAY); PC_DispStr( 0, 12, " MyTask3 ", DISP_FGND_BLACK + DISP_BGND_LIGHT_GRAY); PC_DispStr( 0, 13, " MyTask4 ", DISP_FGND_BLACK + DISP_BGND_LIGHT_GRAY); PC_DispStr( 0, 14, " MyTask5 ", DISP_FGND_BLACK + DISP_BGND_LIGHT_GRAY); PC_DispStr( 0, 15, " ", DISP_FGND_BLACK + DISP_BGND_LIGHT_GRAY); PC_DispStr( 0, 16, " ", DISP_FGND_BLACK + DISP_BGND_LIGHT_GRAY); PC_DispStr( 0, 17, " ", DISP_FGND_BLACK + DISP_BGND_LIGHT_GRAY); PC_DispStr( 0, 18, " ", DISP_FGND_BLACK + DISP_BGND_LIGHT_GRAY); PC_DispStr( 0, 19, " ", DISP_FGND_BLACK + DISP_BGND_LIGHT_GRAY); PC_DispStr( 0, 20, " ", DISP_FGND_BLACK + DISP_BGND_LIGHT_GRAY); PC_DispStr( 0, 21, " ", DISP_FGND_BLACK + DISP_BGND_LIGHT_GRAY); PC_DispStr( 0, 22, " 总任务数 : 每秒任务切换: CPU利用率1: % 2: % ", DISP_FGND_BLACK + DISP_BGND_LIGHT_GRAY); PC_DispStr( 0, 23, " 内核版本 : ", DISP_FGND_BLACK + DISP_BGND_LIGHT_GRAY); PC_DispStr( 0, 24, " 当前时间 : <--按‘ESC’键退出--> ", DISP_FGND_BLACK + DISP_BGND_LIGHT_GRAY); /* Initialize uC/OS-II's statistics */ OSStatInit(); /* Create clock & display task */ OSTaskCreate(TaskClock, (void *)0, &TaskClkStk[TASK_STK_SIZE - 1], TASK_CLK_PRIO); OSTaskCreate(TaskDisp, (void *)0, &TaskDispStk[TASK_STK_SIZE - 1], TASK_DISP_PRIO); /* Create user tasks */ OSTaskCreate(MyTask1, (void *)0, &Task1Stk[TASK_STK_SIZE - 1], TASK_1_PRIO); OSTaskCreate(MyTask2, (void *)0, &Task2Stk[TASK_STK_SIZE - 1], TASK_2_PRIO); OSTaskCreate(MyTask3, (void *)0, &Task3Stk[TASK_STK_SIZE - 1], TASK_3_PRIO); OSTaskCreate(MyTask4, (void *)0, &Task4Stk[TASK_STK_SIZE - 1], TASK_4_PRIO); OSTaskCreate(MyTask5, (void *)0, &Task5Stk[TASK_STK_SIZE - 1], TASK_5_PRIO); /* Display the current version of OS */ sprintf(s, "uC/OS-II V%1d.%02d", OSVersion() / 100, OSVersion() % 100); PC_DispStr(18, 23, s, DISP_FGND_BLACK + DISP_BGND_LIGHT_GRAY); for (;;) { if (PC_GetKey(&key)) { /* See if key has been pressed */ if (key == 0x1B) { /* Yes, see if it's the ESCAPE key */ exit(0); /* Yes, return to DOS */ } } /* ToDo: Don't forget to call the uCOS scheduler with OSTimeDly etc., to give other tasks a chance to run */ //PC_DispStr(4, 17, " ", DISP_FGND_BLACK + DISP_BGND_LIGHT_GRAY); OSTimeDly(400); } } /*$PAGE*/ /* ********************************************************************************************************* * TASK #1 ********************************************************************************************************* */ void MyTask1(void *pdata) { INT8U i; char s[20]; INT32U time1; pdata = pdata; /* Prevent compiler warning */ for (i = 0; i < 2; i++) { //初始化2个APP_TCB块 依次插入链表AppTCBPrioTbl[10] AppTCBInit(TASK_1_PRIO, 1); //设置1个时间片 } while (1) { time1 = PC_ElapsedStop(1); PC_ElapsedStart(1); sprintf(s, "%5.2f", time1/ (FP32)1000000); PC_DispStr(32, 10, s, DISP_FGND_BLACK + DISP_BGND_LIGHT_GRAY); //显示上台时间间隔 //AppSchedRR(TASK_1_PRIO); //按时间片轮转 时间片单位 = MyTask1上台间隔 AppSchedRR2(TASK_1_PRIO); //三级反馈队列 i = APPGetListLen(&AppTCBPrioTbl[TASK_1_PRIO]); sprintf(s, "%2d", i); PC_DispStr(42, 10, s, DISP_FGND_YELLOW + DISP_BGND_BLUE); if (i>0) { sprintf(s, "%4u", AppTCBPrioTbl[TASK_1_PRIO]->Id); PC_DispStr(47, 10, s, DISP_FGND_YELLOW + DISP_BGND_BLUE); } else { PC_DispStr(47, 10, " ", DISP_FGND_BLACK + DISP_BGND_LIGHT_GRAY); } OSTimeDly(150); /* Wait 150 ticks */ } } /* ********************************************************************************************************* * TASK #2 ********************************************************************************************************* */ void MyTask2(void *pdata) { INT8U i; char s[20]; INT32U time2; pdata = pdata; /* Prevent compiler warning */ for (i = 0; i < 3; i++) { //初始化3个APP_TCB块 依次插入链表AppTCBPrioTbl[11] AppTCBInit(TASK_2_PRIO, 2); //设置2个时间片 } while (1) { time2 = PC_ElapsedStop(2); PC_ElapsedStart(2); sprintf(s, "%5.2f", time2/ (FP32)1000000); PC_DispStr(32, 11, s, DISP_FGND_BLACK + DISP_BGND_LIGHT_GRAY); //显示上台时间间隔 //AppSchedRR(TASK_2_PRIO); //按时间片轮转 时间片单位 = MyTask2上台间隔 AppSchedRR2(TASK_2_PRIO); //三级反馈队列 i = APPGetListLen(&AppTCBPrioTbl[TASK_2_PRIO]); sprintf(s, "%2d", i); PC_DispStr(42, 11, s, DISP_FGND_YELLOW + DISP_BGND_BLUE); if (i>0) { sprintf(s, "%4u", AppTCBPrioTbl[TASK_2_PRIO]->Id); PC_DispStr(47, 11, s, DISP_FGND_YELLOW + DISP_BGND_BLUE); } else { PC_DispStr(47, 11, " ", DISP_FGND_BLACK + DISP_BGND_LIGHT_GRAY); } OSTimeDly(120); /* Wait 120 ticks */ } } /*$PAGE*/ /* ********************************************************************************************************* * TASK #3 ********************************************************************************************************* */ void MyTask3(void *pdata) { INT8U i, temp; INT8U err; char s[20]; INT32U time3; pdata = pdata; /* Prevent compiler warning */ for (i = 0; i < 5; i++) { //初始化5个APP_TCB块 依次插入链表AppTCBPrioTbl[12] AppTCBInit(TASK_3_PRIO, 4); //设置4个时间片 } while (1) { time3 = PC_ElapsedStop(3); PC_ElapsedStart(3); sprintf(s, "%5.2f", time3/ (FP32)1000000); PC_DispStr(32, 12, s, DISP_FGND_BLACK + DISP_BGND_LIGHT_GRAY); //显示上台时间间隔 AppSchedRR(TASK_3_PRIO); //按时间片轮转 时间片单位 = MyTask3上台间隔 i = APPGetListLen(&AppTCBPrioTbl[TASK_3_PRIO]); //这里可知是否有新块跌落 sprintf(s, "%2d", i); PC_DispStr(42, 12, s, DISP_FGND_YELLOW + DISP_BGND_BLUE); sprintf(s, "%4u", AppTCBPrioTbl[TASK_3_PRIO]->Id); PC_DispStr(47, 12, s, DISP_FGND_YELLOW + DISP_BGND_BLUE); OSTimeDly(90); /* Wait 90 ticks */ } } /* ********************************************************************************************************* * TASK #4 ********************************************************************************************************* */ void MyTask4(void *pdata) { INT8U err; char msg[20]; //改成动态申请内存后可删 pdata = pdata; /* Prevent compiler warning */ strcpy(&msg[0], "任务4消息!"); //改成实时产生消息内容后可删 while (1) { //在这里补充:请求跌落事件-->申请内存块-->将当前时间组成消息内容 err = OSQPost(MsgQ, (void *)&msg[0]); //发送消息 OSTimeDly(70); /* Wait 70 ticks */ } } /*$PAGE*/ /* ********************************************************************************************************* * TASK #5 ********************************************************************************************************* */ void MyTask5(void *pdata) { INT8U err; char *msg; pdata = pdata; /* Prevent compiler warning */ while (1) { msg = (char *)OSQPend(MsgQ, 0, &err); //请求消息 PC_DispStr(4, 17, msg, DISP_FGND_BLACK + DISP_BGND_LIGHT_GRAY); err = OSQFlush(MsgQ); //清洗消息队列 当改成动态产生消息后本句可删 OSTimeDly(30); /* Wait 30 ticks */ } } /* ********************************************************************************************************* * CLOCK TASK ********************************************************************************************************* */ void TaskClock (void *pdata) { char s[40]; pdata = pdata; /* Prevent compiler warning */ for (;;) { sprintf(s, "%3d", OSTaskCtr); PC_DispStr(18, 22, s, DISP_FGND_YELLOW + DISP_BGND_BLUE); /* Total tasks */ sprintf(s, "%3d", OSCtxSwCtr); PC_DispStr(39, 22, s, DISP_FGND_YELLOW + DISP_BGND_BLUE); /* Context switch counter */ sprintf(s, "%5.2f", OSCPUUsage); PC_DispStr(60, 22, s, DISP_FGND_YELLOW + DISP_BGND_BLUE); /* CPU usage */ sprintf(s, "%5.2f", AppCPUUsage * 100); PC_DispStr(72, 22, s, DISP_FGND_YELLOW + DISP_BGND_BLUE); /* CPU usage 2 */ PC_GetDateTime(s); PC_DispStr(18, 24, s, DISP_FGND_YELLOW + DISP_BGND_BLUE); /* System time */ PC_DispStr(4, 17, " ", DISP_FGND_BLACK + DISP_BGND_LIGHT_GRAY); //每秒清除消息显示 OSCtxSwCtr = 0; //每秒清零总切换次数 OSTimeDly(OS_TICKS_PER_SEC); } } /*$PAGE*/ /* ********************************************************************************************************* * DISPLAY TASK ********************************************************************************************************* */ void TaskDisp(void *pdata) { INT8U i; pdata = pdata; /* Prevent compiler warning */ while (1) { for (i = 0; i < 5; i++) { //刷新5个用户任务 DispTaskData(i); } OSTimeDly(35); //值过小刷新频率太快 过大不易捕捉状态变化 } } /*$PAGE*/ /* ********************************************************************************************************* * 与TASK_USER_DATA有关函数 ********************************************************************************************************* */ void UpdateTaskData (INT8U id) { INT8U err; err = OSTaskQuery (id + 10, &tcb_copy); TaskUserData[id].MyTCBDly = tcb_copy.OSTCBDly; TaskUserData[id].MyTCBStat = tcb_copy.OSTCBStat; TaskUserData[id].MyTCBPrio = tcb_copy.OSTCBPrio; TaskUserData[id].MyTCBCtxSwCtr = tcb_copy.OSTCBCtxSwCtr; } void DispTaskData (INT8U id) { char s[40]; sprintf(s, "%3d", TaskUserData[id].MyTCBCtxSwCtr); PC_DispStr(14, (INT8U)(id + 10), s, DISP_FGND_BLACK + DISP_BGND_LIGHT_GRAY); if (0 == TaskUserData[id].MyTCBStat) { if (TaskUserData[id].MyTCBDly <= 5) { PC_DispStr(20, (INT8U)(id + 10), " Ready", DISP_FGND_BLACK + DISP_BGND_LIGHT_GRAY); } else { PC_DispStr(20, (INT8U)(id + 10), " Delayed", DISP_FGND_BLACK + DISP_BGND_LIGHT_GRAY); } } else if (1 == TaskUserData[id].MyTCBStat) { //等待信号量事件 PC_DispStr(20, (INT8U)(id + 10), " Wait_Sem", DISP_FGND_BLACK + DISP_BGND_LIGHT_GRAY); } else if (4 == TaskUserData[id].MyTCBStat) { //等待消息事件 PC_DispStr(20, (INT8U)(id + 10), " Wait_Msg", DISP_FGND_BLACK + DISP_BGND_LIGHT_GRAY); } else if (8 == TaskUserData[id].MyTCBStat) { //被挂起 等待恢复事件 PC_DispStr(20, (INT8U)(id + 10), "Suspended", DISP_FGND_BLACK + DISP_BGND_LIGHT_GRAY); } else if (16 == TaskUserData[id].MyTCBStat) { //等待互斥信号量事件 PC_DispStr(20, (INT8U)(id + 10), " Wait_Mtx", DISP_FGND_BLACK + DISP_BGND_LIGHT_GRAY); } else { PC_DispStr(20, (INT8U)(id + 10), " Other", DISP_FGND_BLACK + DISP_BGND_LIGHT_GRAY); } } /* ********************************************************************************************************* * 与APP_TCB有关函数 * * 1. InitAppTCBList() -- Initialize the free list of APP_TCBs * 2. AppTCBInit() -- 初始化一个APP_TCB块 并将其插入对应的AppTCBPrioTbl[prio] * 3. AppSchedRR() -- 在双向链表上实现轮转调度 * 4. AppSchedRR2() -- 在轮转调度基础上实现多级反馈队列 ********************************************************************************************************* */ void InitAppTCBList (void) { INT8U ix; INT8U ix_next; APP_TCB *ptcb1; APP_TCB *ptcb2; OS_MemClr((INT8U *)&AppTCBTbl[0], sizeof(AppTCBTbl)); /* Clear all the APP_TCBs */ OS_MemClr((INT8U *)&AppTCBPrioTbl[0], sizeof(AppTCBPrioTbl)); /* Clear the priority table */ for (ix = 0u; ix < 128; ix++) { //初始化128个APP_TCB块 ix_next = ix + 1u; ptcb1 = &AppTCBTbl[ix]; ptcb2 = &AppTCBTbl[ix_next]; ptcb1->Next = ptcb2; ptcb1->Id = ix; //数组下标是组成ID的一部分 } ptcb1 = &AppTCBTbl[ix]; ptcb1->Next = (APP_TCB *)0; //最后一个块 AppTCBFreeList = &AppTCBTbl[0]; //空闲APP_TCB链头 } int AppTCBInit (INT8U prio, INT32U time_quanta) { APP_TCB *ptcb; ptcb = AppTCBFreeList; /* Get a free TCB from the free TCB list */ if (ptcb != (APP_TCB *)0 && ptcb->Id < 1000) { AppTCBFreeList = ptcb->Next; /* Update pointer to free TCB list */ ptcb->TCBPrio = prio; ptcb->TCBStat = OS_STAT_RDY; ptcb->TCBDly = 0u; ptcb->Next = (APP_TCB *)0; //后向指针清空 ptcb->TQ = time_quanta; //设置时间片 ptcb->TQctr = time_quanta; //设置当前剩余时间片 ptcb->Id += 1000u; //每个新划分TCB的标识由四位数字组成 APPInsertListTail(&AppTCBPrioTbl[prio], ptcb); //将新划分的TCB按优先级插入对应链表 return 1; } return 0; } void AppSchedRR (INT8U prio) { APP_TCB *ptcb; ptcb = AppTCBPrioTbl[prio]; if (ptcb->TQctr > 0u) { ptcb->TQctr--; return; } if (ptcb->Next != NULL) { AppTCBPrioTbl[prio] = ptcb->Next; ptcb->Next = NULL; ptcb->TQctr = ptcb->TQ; APPInsertListTail(&AppTCBPrioTbl[prio], ptcb); } else { ptcb->TQctr = ptcb->TQ; } } void AppSchedRR2 (INT8U prio) { APP_TCB *ptcb; ptcb = AppTCBPrioTbl[prio]; if (ptcb == NULL) { return; } if (ptcb->TQctr > 0u) { ptcb->TQctr--; } else { if (ptcb->TQctr != 0u) return; AppTCBPrioTbl[prio] = ptcb->Next; ptcb->Next = (APP_TCB *)0; //后向指针清空 ptcb->TQ = (ptcb->TQ) * 2; //下一级队列时间片翻倍 ptcb->TQctr = ptcb->TQ; APPInsertListTail(&AppTCBPrioTbl[prio + 1], ptcb); } return; } /* ********************************************************************************************************* * STATISTIC TASK HOOK ********************************************************************************************************* */ void OSTaskStatHook (void) { INT8U i; for (i = 0; i < 5; i++) { //仅更新用户任务数据 不打印 UpdateTaskData(i); } } /* ********************************************************************************************************* * TASK SWITCH HOOK ********************************************************************************************************* */ void OSTaskSwHook (void) { INT32U time; time = PC_ElapsedStop(0); /* This task is done */ PC_ElapsedStart(0); /* Start for next task */ /*if ((OSTCBCur->OSTCBPrio >= 10) && (OSTCBCur->OSTCBPrio <= 14)) { TaskUserData[(OSTCBCur->OSTCBPrio) - 10].MyTCBCycles = time; }*/ if (OSTCBCur->OSTCBPrio == 30) { AppCPUUsage = 1.0 - time_idle / (FP32)1000000; time_idle = 0; } if (OSTCBCur->OSTCBPrio == 63) { time_idle += time; } } /* ********************************************************************************************************* * DUMMY HOOKS ********************************************************************************************************* */ void OSInitHookEnd() { } void OSTimeTickHook() { } void OSTaskCreateHook(OS_TCB *ptcb) { } void OSTaskIdleHook() { //OS_SLEEP(); } 在Test.c中修改或补充代码,实现如下功能: 1)使用动态内存完善MyTask4与MyTask5中的消息发送过程。动态内存以及内存控制块指针在全局变量中已有定义: OS_MEM *pMem; INT8U myMem[10][32]; 请于main函数中完成对动态内存分区的创建。并于MyTask4与MyTask5中恰当位置申请/释放内存块(使用OSMemGet()OSMemPut()),用以处理消息的装填和清除。 此外,为了使消息内容更有实际意义,我们设定发送消息的条件是:每当有新APP_TCB块跌落至三级反馈队列的最低一级(对应MyTask3的队列),应当通知消息发送者MyTask4将跌落消息连同当前时间一并发给接收者MyTask5。 显然,MyTask3知道何时有新的块跌落。你应当在MyTask3中恰当位置补充代码,当检测到有新块后基于某种方式通知MyTask4。具体通知方法可使用普通信号量,而且此处接近生产者-消费者问题中的Full信号量。 2)输出区多了OS_MEM_DATA栏,用来显示当前使用动态分区的起始地址、总块数和每个块的大小。 基于内存分区查询函数OSMemQuery()可实现这一功能。其原型是: INT8U OSMemQuery (OS_MEM *pmem, OS_MEM_DATA *p_mem_data) 其中pmem为待查询分区的内存控制块指针,p_mem_data指向了查询后的数据。在全局变量处已有定义: OS_MEM_DATA mem_data; 你应当在起始任务中合适位置调用OSMemQuery(),并根据查询后的mem_data相关成员变量输出OS_MEM_DATA栏内的信息。 给出补全后的完整c代码
05-29
/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2025 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "usart.h" #include "gpio.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "includes.h" /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* �������ȼ����� */ #define START_TASK_PRIO 10 #define KEY_TASK_PRIO 11 #define LED_TASK_PRIO 12 /* �����ջ��С */ #define START_TASK_STK_SIZE 128 #define KEY_TASK_STK_SIZE 128 #define LED_TASK_STK_SIZE 128 /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN PV */ /* �����ջ */ OS_STK StartTaskStk[START_TASK_STK_SIZE]; OS_STK KeyTaskStk[KEY_TASK_STK_SIZE]; OS_STK LED_TaskStk[LED_TASK_STK_SIZE]; /* ��Ϣ���� */ OS_EVENT *CMbox; /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); /* USER CODE BEGIN PFP */ void StartTask(void *p_arg); void KeyTask(void *p_arg); void LED_Task(void *p_arg); /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_USART1_UART_Init(); /* USER CODE BEGIN 2 */ /* ��ʼ��UCOSII */ OSInit(); /* ������Ϣ���� */ CMbox = OSMboxCreate((void *)0); /* ������ʼ���� */ OSTaskCreate(StartTask, (void *)0, &StartTaskStk[START_TASK_STK_SIZE - 1], START_TASK_PRIO); /* ����UCOSII */ OSStart(); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) { Error_Handler(); } } /* USER CODE BEGIN 4 */ /* ��ʼ���� - ������������ */ void StartTask(void *p_arg) { // ��������ɨ������ OSTaskCreate(KeyTask, (void *)0, &KeyTaskStk[KEY_TASK_STK_SIZE - 1], KEY_TASK_PRIO); // ����LED�������� OSTaskCreate(LED_Task, (void *)0, &LED_TaskStk[LED_TASK_STK_SIZE - 1], LED_TASK_PRIO); // ɾ����ʼ���� OSTaskDel(OS_PRIO_SELF); } /* ����ɨ������ */ void KeyTask(void *p_arg) { while (1) { // ���KEY1�������������ӵ�PA0�� if (HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_0) == GPIO_PIN_RESET) { HAL_Delay(20); // ���� if (HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_0) == GPIO_PIN_RESET) { OSMboxPost(CMbox, (void *)"left"); // ����������Ϣ while (HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_0) == GPIO_PIN_RESET); // �ȴ��ͷ� } } // ���KEY2�������������ӵ�PB1�� if (HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_1) == GPIO_PIN_RESET) { HAL_Delay(20); // ���� if (HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_1) == GPIO_PIN_RESET) { OSMboxPost(CMbox, (void *)"right"); // ����������Ϣ while (HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_1) == GPIO_PIN_RESET); // �ȴ��ͷ� } } OSTimeDly(50); // ��ʱ50ms } } /* LED�������� */ void LED_Task(void *p_arg) { uint8_t led_state = 0x01; while (1) { // �ȴ���Ϣ char *msg = (char *)OSMboxPend(CMbox, 0, NULL); if (msg != NULL) { if (strcmp(msg, "left") == 0) { // ���� if (led_state >= 0x80) led_state = 0x01; else led_state <<= 1; } else if (strcmp(msg, "right") == 0) { // ���� if (led_state <= 0x01) led_state = 0x80; else led_state >>= 1; } // ����LED��ʾ HAL_GPIO_WritePin(GPIOC, GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3| GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7, GPIO_PIN_SET); // ȫ��Ϩ�� // ������ӦLED if (led_state & 0x01) HAL_GPIO_WritePin(GPIOC, GPIO_PIN_0, GPIO_PIN_RESET); if (led_state & 0x02) HAL_GPIO_WritePin(GPIOC, GPIO_PIN_1, GPIO_PIN_RESET); if (led_state & 0x04) HAL_GPIO_WritePin(GPIOC, GPIO_PIN_2, GPIO_PIN_RESET); if (led_state & 0x08) HAL_GPIO_WritePin(GPIOC, GPIO_PIN_3, GPIO_PIN_RESET); if (led_state & 0x10) HAL_GPIO_WritePin(GPIOC, GPIO_PIN_4, GPIO_PIN_RESET); if (led_state & 0x20) HAL_GPIO_WritePin(GPIOC, GPIO_PIN_5, GPIO_PIN_RESET); if (led_state & 0x40) HAL_GPIO_WritePin(GPIOC, GPIO_PIN_6, GPIO_PIN_RESET); if (led_state & 0x80) HAL_GPIO_WritePin(GPIOC, GPIO_PIN_7, GPIO_PIN_RESET); } } } /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */
05-11
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值