tensor shape can be flexible to determined in Tensorflow

I would like to record the usage of tensor shape in Tensorflow.

Suppose a tensor variable A, as before, I would to use the usage A.get_shape() to detect its shape, while this usage has a crucial disadvantage. For example:

A = tf.placeholder(dtype=tf.float32, shape=[None, 28, 281])

At present, we want get the first element values of the shape of A. If we use A.get_shape()[0].value, it will result in None. While if we use tf.shape(A)[0], we will get the real value for the corresponding value.

BTW, A.get_shape()[0] could be performed without the Session initialization, but tf.shape(A)[0] needs to be performed after the Session has been initialized.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值