1.Haar特征
最早的Haar特征由PapageorgiouC.等提出(《A general framework for object detection》),后来PaulViola和Michal Jones提出利用积分图像法快速计算Haar特征的方法(《Rapid object detection using a boosted cascade of simplefeatures》)。之后,Rainer Lienhart 和 Jochen Maydt用对角特征对Haar特征库进行了扩展(《An extended set of Haar-like features for rapid objectdetection》)。OpenCV的Haar分类器就是基于扩展后的特征库(含下图中的1、2、3,共14种)实现的。
1.1 Haar特征定义
Haar特征是基于“块”的特征,也被称为矩形特征。Haar特征(模板)分为三类:边缘特征、线性特征、中心特征和对角线特征。特征模板内有白色和黑色两种矩形,并定义该模板的特征值为白色矩形像素和减去黑色矩形像素和。Haar特征值反映了图像的灰度变化情况。例如:脸部的一些特征能由矩形特征简单的描述,如:眼睛要比脸颊颜色要深,鼻梁两侧比鼻梁颜色要深,嘴巴比周围颜色要深等。但矩形特征只对一些简单的图形结构,如边缘、线段较敏感,所以只能描述特定走向(水平、垂直、对角)的结构。