题目名称:39. Combination Sum
题目难度:Medium
题目描述:Given a set of candidate numbers (C) (without duplicates) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
All numbers (including target) will be positive integers.
The solution set must not contain duplicate combinations.
For example, given candidate set [2, 3, 6, 7] and target 7,
A solution set is:
[
[7],
[2, 2, 3]
]
题目分析:
题目要求我们在给定的数组中找出想加起来等于给定数的集合。给定的数组中的数可以重复利用。
首先最直接能想到的应该就是遍历了,遍历所有可能的情况,找出符合条件的情况。但是这样的遍历代价太大了,即使做出来,这样的算法也毫无意义。那么有没有什么比较高效的算法呢?
可以利用递归。递归的每一层尝试所有情况,并更新target。比如给定的例子,target是7,第一层我们新建四种情况,每种情况都从给定给的数组中拿一个数出来。然后更新target:target -= 该数。当target为0的时候,我们就找到了我们要的集合。另外,当target小于0的时候,说明已经没有找下去的必要了,可以及时剪枝。
最后AC的代码如下:
class Solution {
public:
bool isDec(vector<int> v) {
for (int i = 0; i < v.size(); ++i) {
for (int j = i + 1; j < v.size(); ++j) {
if (v[i] > v[j]) {
return false;
}
}
}
return true;
}
void findAllCom(vector<vector<int> > & result, vector<int> current, vector<int> & candidates, int target) {
if (target == 0) {
if (isDec(current)) {
result.push_back(current);
return;
}
} else if (target < 0) {
return;
} else {
for (int i = 0; i < candidates.size(); ++i) {
vector<int> temp(current);
temp.push_back(candidates[i]);
findAllCom(result, temp, candidates, target - candidates[i]);
}
}
}
vector<vector<int> > combinationSum(vector<int>& candidates, int target) {
vector<vector<int> > result;
vector<int> current;
findAllCom(result, current, candidates, target);
return result;
}
};