
数据分析
Frank_07
这个作者很懒,什么都没留下…
展开
-
panda缺失值处理
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.fillna.htmlimport pandas as pdimport numpy as npdf=pd.DataFrame(np.random.rand(5,6))df 0 1 2翻译 2017-11-10 11:12:30 · 3177 阅读 · 0 评论 -
数据拟合
import matplotlib.pyplot as pltimport numpy as npfrom scipy.optimize import curve_fitx = np.arange(1, 17, 1)y = np.array([4.00, 6.40, 8.00, 8.80, 9.22, 9.50, 9.70, 9.86, 10.00, 10.20, 10.32, 10.42,转载 2017-11-14 09:53:24 · 695 阅读 · 0 评论 -
数据插值
import matplotlib.pyplot as pltimport numpy as npfrom scipy import interpolatex = np.linspace(0, 10, num=11, endpoint=True)y = np.cos(x)#分别使用 线性插值,三次样条插值法cubic,拉格朗日插值def interp(): f_linear = in原创 2017-11-14 11:31:39 · 440 阅读 · 0 评论 -
pandas 分组聚合
import pandas as pdimport numpy as npdf = pd.DataFrame({'key1': ['a', 'a', 'b', 'b', 'a'], 'key2': ['one', 'two', 'one', 'two', 'one'], 'data1': np.random.randn(5),原创 2017-11-03 15:11:06 · 374 阅读 · 0 评论 -
线性回归随手笔记
Python线性回归原创 2017-11-02 10:00:47 · 254 阅读 · 0 评论