【Medium】209. Minimum Size Subarray Sum

本文介绍了一种使用双指针法解决寻找具有最小长度且总和大于等于给定值s的连续子数组的问题。通过逐步移动左右指针,实现高效求解。

Given an array of n positive integers and a positive integer s, find the minimal length of a subarray of which the sum ≥ s. If there isn't one, return 0 instead.

For example, given the array [2,3,1,2,4,3] and s = 7,

the subarray [4,3] has the minimal length under the problem constraint.

中心思想:

subarray--> 数字是连续的
用两个指针left和right,起始指在数组开头。

当指针指的位置都没有超过数组长度时,将right指向的数都加到sum并不断右移,直到sum >= s。注意这里要加上right<n的条件,否则进行到下一个while时right可能会超出n的长度。
当sum >= s时,记录下当前最小subarray长度。然后sum减去left指针所指的数,并且left右移,直到sum再次小于s。

class Solution {
public:
    int minSubArrayLen(int s, vector<int>& nums) {
<span style="white-space:pre">	</span>int n = nums.size();
        if (n==0)
            return 0;

        int left = 0, right = 0, sum = 0, minimum = n+1;
        while(left < n && right < n){
            while (sum < s && right < n){
                sum += nums[right];
                right++;
            }
            while (sum >=s){
                minimum = min(minimum, right-left);
                sum -= nums[left];
                left++;
            }
        }
        
        if (minimum == n+1)


STM32电机库无感代码注释无传感器版本龙贝格观测三电阻双AD采样前馈控制弱磁控制斜坡启动内容概要:本文档为一份关于STM32电机控制的无传感器版本代码注释资源,聚焦于龙贝格观测器在永磁同步电机(PMSM)无感控制中的应用。内容涵盖三电阻双通道AD采样技术、前馈控制、弱磁控制及斜坡启动等关键控制策略的实现方法,旨在通过详细的代码解析帮助开发者深入理解基于STM32平台的高性能电机控制算法设计与工程实现。文档适用于从事电机控制开发的技术人员,重点解析了无位置传感器控制下的转子初始定位、速度估算与系统稳定性优化等问题。; 适合人群:具备一定嵌入式开发基础,熟悉STM32平台及电机控制原理的工程师或研究人员,尤其适合从事无感FOC开发的中高级技术人员。; 使用场景及目标:①掌握龙贝格观测器在PMSM无感控制中的建模与实现;②理解三电阻采样与双AD同步采集的硬件匹配与软件处理机制;③实现前馈补偿提升动态响应、弱磁扩速控制策略以及平稳斜坡启动过程;④为实际项目中调试和优化无感FOC系统提供代码参考和技术支持; 阅读建议:建议结合STM32电机控制硬件平台进行代码对照阅读与实验验证,重点关注观测器设计、电流采样校准、PI参数整定及各控制模块之间的协同逻辑,建议配合示波器进行信号观测以加深对控制时序与性能表现的理解。
### 最大子数组和算法实现与解释 最大子数组和问题旨在从一个整数数组中找出具有最大和的连续子数组。该问题的经典解法采用动态规划思想,其核心逻辑在于逐个位置计算以当前元素结尾的最大子数组和,并记录全局最大值。 动态规划状态转移方程如下: `maxSubArray(A, i) = maxSubArray(A, i - 1) > 0 ? maxSubArray(A, i - 1) : 0 + A[i]` 该公式表示如果前一个位置的最大子数组和大于零,则将其加入当前位置的数值形成新的候选值;否则仅保留当前位置的数值作为起始点。通过这种方式,可以在线性时间内完成整个数组的遍历并求出最大子数组和[^1]。 #### Java 实现示例 ```java class Solution { public int maxSubArray(int[] A) { int n = A.length; int[] dp = new int[n]; // dp[i] 表示以 A[i] 结尾的最大子数组和 dp[0] = A[0]; int max = dp[0]; for (int i = 1; i < n; i++) { dp[i] = A[i] + (dp[i - 1] > 0 ? dp[i - 1] : 0); max = Math.max(max, dp[i]); } return max; } } ``` 上述代码使用了一个长度为 `n` 的数组 `dp` 来存储每个位置上的最大子数组和,最终返回全局最大值 `max`。该方法的时间复杂度为 O(n),空间复杂度也为 O(n)。 为了进一步优化空间复杂度,可以仅维护前一个状态的值,从而将空间复杂度降低至 O(1): #### 空间优化版本(O(1)) ```java class Solution { public int maxSubArray(int[] nums) { if (nums == null || nums.length == 0) { return 0; } int prev = nums[0]; int result = prev; for (int i = 1; i < nums.length; ++i) { prev = Math.max(nums[i], prev + nums[i]); result = Math.max(result, prev); } return result; } } ``` 在该实现中,变量 `prev` 记录以当前元素结尾的最大子数组和,而 `result` 跟踪整个过程中的最大值。这样避免了额外数组的使用,使空间效率更优[^2]。 --- ### 相关应用场景 该算法不仅适用于最大子数组问题本身,还可推广至股票买卖利润最大化等场景。例如,在给定每日股价数组中寻找最大收益时,可以通过构造价格差分数组并应用最大子数组和算法来解决[^3]。 --- ### 示例:C++ 实现(异常安全与空间优化) 以下是一个 C++ 版本的实现,结合了内存管理优化和异常处理机制,确保程序在面对大规模输入时具备更好的鲁棒性: ```cpp #include <iostream> #include <vector> #include <algorithm> int maxSubArraySum(const std::vector<int>& nums) { if (nums.empty()) return 0; int prev = nums[0]; int result = prev; for (size_t i = 1; i < nums.size(); ++i) { prev = std::max(nums[i], prev + nums[i]); result = std::max(result, prev); } return result; } int main() { try { std::vector<int> nums; nums.reserve(1 << 20); // 预留百万级元素的空间 for (int i = 0; i < 1000000; ++i) { nums.push_back(i % 100 - 50); // [-50, 49] } int maxSum = maxSubArraySum(nums); std::cout << "Maximum subarray sum: " << maxSum << std::endl; } catch (const std::bad_alloc& e) { std::cerr << "Memory allocation failed: " << e.what() << std::endl; } catch (...) { std::cerr << "An unexpected error occurred." << std::endl; } return 0; } ``` 此实现通过 `reserve()` 提前分配足够容量,减少频繁扩容带来的性能开销,并通过 `try-catch` 捕获可能的内存分配异常,提高程序稳定性[^1]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值