大语言模型之十五-预训练和监督微调中文LLama-2

这篇博客是继《大语言模型之十二 SentencePiece扩充LLama2中文词汇》、《大语言模型之十三 LLama2中文推理》和《大语言模型之十四-PEFT的LoRA
前面博客演示了中文词汇的扩充以及给予LoRA方法的预训练模型参数合并,并没有给出LoRA模型参数是如何训练得出的。
本篇博客将分析LoRA模型是和训练得到的。还是以7B参数量的模型为例。本篇博客依然基于Chinese-LLaMA-Alpaca-2开源项目。

pre-train

deepspeed

LLM的训练成本较大,需要昂贵的多卡多节点GPU集群,即使拥有集群GPU训练效率往往也达不到50%,各大小公司想要更轻松、快速、经济的训练和部署私有的LLM,微软

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

shichaog

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值