POJ-1182 食物链

题目链接:http://poj.org/problem?id=1182

转载于:https://blog.youkuaiyun.com/niushuai666/article/details/6981689

   下面详细讲解并查集的两个重要操作:查找和合并.

查找操作:
   在查找时因为节点不仅有父亲节点域,而且还有表示节点与其父亲节点的关系域,查找过程中对父亲节点域的处理和简单的并查集处理一样,即在查找过程中同时实现路径压缩,但正是由于路径压缩,使得表示节点与其父亲节点的关系域发生了变化,所以在路径压缩过程中节点和其对应的父节点的关系域发生了变化(因为路径压缩之前节点x的父亲节点为rootx的话,那么在路径压缩之后节点x的父亲节点就变为了节点rootx的父亲节点rootxx,所以此时p[x].relation存储的应该是节点x与现在父亲节点rootxx的关系),此处可以画图理解一下:


    很明显查找之前节点x的父亲节点为rootx,假设此时p[x].relation=1(即表示x的父亲节点rootx吃x)且p[rootx].relation=0(即表示rootx和其父亲节点rootxx是同类),由这两个关系可以推出rootxx吃x,而合并以后节点x的父亲节点为rootxx(实现了路径压缩),且节点x的父亲节点rootxx吃x,即查找之后p[x].relation=1。

合并操作:

     在将元素x与y所在的集合合并时,假设元素x所在的集合编号为rootx,元素y所在的集合编号为rooty,合并时直接将集合rooty挂到集合rootx上,即p[rooty].parent=rootx,此时原来集合rooty中的根节点rooty的关系域也应随之发生变化,因为合并之前rooty的父亲节点就是其自身,故此时p[rooty].relation=0,而合并之后rooty的父亲节点为rootx,所以此时需判断rootx与rooty的关系,即更新p[rooty]的值,同理画图理解:
     
   此时假设假设p[x].relation=0(即x与rootx的关系是同类),p[y].relation=1(即rooty吃y),则有:
        1>输入d=1时,即输入的x和y是同类,则有上述关系可以推出rooty吃rootx,即p[rooty].relation=2;
        2>输入d=2时,即输入的x吃y,则有上述关系可以推出rooty与rootx是同类(因为rooty吃y,x吃y,则rooty与x是同类,又rootx与x是同类),即p[rooty].relation=0;
   当然,这只是一种可能,其它的可能情况和上面一样分析。

   当元素x与元素y在同一集合时,则不需要合并,因为此时x与y的父亲节点相同,可以分情况讨论:
        1>d=1时,即x与y是同类时,此时要满足这要求,则必须满足p[x].relation=p[y].relation,这很容易推出来.
        2>d=2时,即表示x吃y,此时要满足这要求,则也必须满足一定的条件,如x和root是同类(即p[x].relation=0),此时要满足x吃y,则必须满足root吃y,即p[y].relation=1,可以像上面一样画图来帮助理解.

关系域更新:

当然,这道题理解到这里思路已经基本明确了,剩下的就是如何实现,在实现过程中,我们发现,更新关系域是一个很头疼的操作,网上各种分析都有,但是都是直接给出个公式,至于怎么推出来的都是一笔带过,让我着实头疼了很久,经过不断的看discuss,终于明白了更新操作是通过什么来实现的。下面讲解一下

仔细再想想,rootx-x 、x-y、y-rooty,是不是很像向量形式?于是我们可以大胆的从向量入手:

tx       ty

|          |

x   ~    y

对于集合里的任意两个元素x,y而言,它们之间必定存在着某种联系,因为并查集中的元素均是有联系的(这点是并查集的实质,要深刻理解),否则也不会被合并到当前集合中。那么我们就把这2个元素之间的关系量转化为一个偏移量(大牛不愧为大牛!~YM)。

由上面可知:
x->y 偏移量0时 x和y同类

x->y 偏移量1时 x被y吃

x->y 偏移量2时 x吃y

有了这个假设,我们就可以在并查集中完成任意两个元素之间的关系转换了。

不妨继续假设,x的当前集合根节点rootx,y的当前集合根节点rooty,x->y的偏移值为d-1(题中给出的询问已知条件)

(1)如果rootx和rooty不相同,那么我们把rooty合并到rootx上,并且更新relation关系域的值(注意:p[i].relation表示i的根结点到i的偏移量!!!!(向量方向性一定不能搞错)

    此时 rootx->rooty = rootx->x + x->y + y->rooty,这一步就是大牛独创的向量思维模式

    上式进一步转化为:rootx->rooty = (relation[x]+d-1+3-relation[y])%3 = relation[rooty],(模3是保证偏移量取值始终在[0,2]间)

(2)如果rootx和rooty相同(即x和y在已经在一个集合中,不需要合并操作了,根结点相同),那么我们就验证x->y之间的偏移量是否与题中给出的d-1一致

    此时 x->y = x->rootx + rootx->y

    上式进一步转化为:x->y = (3-relation[x]+relation[y])%3,
    若一致则为真,否则为假。

 

分析到这里,这道题已经从思想过渡到实现了。剩下的就是一些细节问题,自己处理一下就好了。

PS:做完这题,就可以去秒了大部分基础的并查集了,嘿嘿大笑

代码如下:

​
/*解题关键,利用向量解决个动物之间关系*/
#include<stdio.h>
#define max 50010
typedef struct
{
	int pre;
	int relation;
}node;
node p[max];

int find(int x)//砍树,变成至多2层的树,简称路径压缩
{
	int temp;
	if(x==p[x].pre)
		return x;
	temp=p[x].pre;
	p[x].pre=find(temp);
	p[x].relation=(p[x].relation+p[temp].relation)%3;//root->x=root->pre+pre->x,由于压缩,
	                                                 //树会成2层,加上合并树的时,接在根上
	                                                 //注定不会超过3层,故此有了向量思维模式
	return p[x].pre;//root
}

int main()
{
	int n,k,num=0,i;
	scanf("%d%d",&n,&k);
	for(i=1;i<=n;i++)
	{
		p[i].pre=i; 
		p[i].relation=0;//0同类,1 root吃孩子, 2  孩子吃 root
	}
	for(i=1;i<=k;i++)
	{
		int d,x,y;
		scanf("%d%d%d",&d,&x,&y);
		if(x>n||y>n||((x==y)&&d==2))
		{
			num++;
			continue;
		}
		int rootx=find(x),rooty=find(y);//经过find后,深度为2,此为下面成立的条件
		if(rootx!=rooty)
		{
			p[rooty].pre=rootx;
			p[rooty].relation=(p[x].relation+d-1+3-p[y].relation)%3;
			//rootx->rooty=rootx->x+x->y+y->rooty,
			
		}
		else//相同祖先
		{
				if((3-p[x].relation+p[y].relation)%3!=d-1)//x->y=x->root+root->y
				{
					num++;
					continue;
				}
		}
	}
	printf("%d\n",num);
	return 0;
}

			  





​
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值