YOLOv8目标检测项目实战(从训练到部署)

部署运行你感兴趣的模型镜像

YOLOv8目标检测项目实战流程

环境准备 安装Python 3.8+和PyTorch 1.7+,使用官方推荐的CUDA版本。通过pip安装ultralytics包:

pip install ultralytics

数据准备 标注数据需转换为YOLO格式,目录结构应包含images/train、images/val和对应的labels文件夹。创建dataset.yaml配置文件:

path: ./dataset
train: images/train
val: images/val
names:
  0: class1
  1: class2

模型训练 使用预训练权重启动训练,关键参数包括epochs、batch和imgsz:

yolo task=detect mode=train model=yolov8n.pt data=dataset.yaml epochs=100 imgsz=640

训练过程会自动记录到runs/detect/train目录,包含权重文件、评估指标和可视化结果。

模型验证 训练完成后验证模型性能:

yolo task=detect mode=val model=runs/detect/train/weights/best.pt data=dataset.yaml

输出包括mAP、precision-recall曲线等关键指标。

模型导出 部署前需转换为目标格式,例如ONNX或TensorRT:

yolo task=detect mode=export model=best.pt format=onnx opset=12

对于边缘设备,可导出为TensorRT格式提升推理速度。

部署应用 Python推理示例代码:

from ultralytics import YOLO
model = YOLO('best.pt')
results = model.predict(source='input.jpg', save=True)

性能优化 针对部署环境调整参数:

  • 使用TensorRT加速时设置half=True启用FP16
  • 调整conf和iou阈值平衡检测精度与速度
  • 对于视频流处理,启用stream=True参数减少延迟

常见问题处理 训练中出现过拟合时可尝试:

  • 增加数据增强参数(flipud=0.5, translate=0.2)
  • 减小模型规模(选择yolov8s而非yolov8x)
  • 提前停止训练(patience=10)

部署时内存不足的解决方案:

  • 降低推理分辨率(imgsz=320)
  • 使用动态batch处理
  • 启用GPU内存优化选项

您可能感兴趣的与本文相关的镜像

Yolo-v8.3

Yolo-v8.3

Yolo

YOLO(You Only Look Once)是一种流行的物体检测和图像分割模型,由华盛顿大学的Joseph Redmon 和Ali Farhadi 开发。 YOLO 于2015 年推出,因其高速和高精度而广受欢迎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

shayudiandian

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值