论文地址:https://arxiv.org/abs/1902.09212
官方源码:https://github.com/leoxiaobin/deep-high-resolution-net.pytorch
HRNet网络结构
这里引用“太阳花的小绿豆”绘制的一张基于HRNet-32模型的结构图。便于后续理解。
重要的部分写在代码注释里了,阅读的时候注意。
代码详解
forward函数
def get_pose_net(cfg, is_train, **kwargs):
model = PoseHighResolutionNet(cfg, **kwargs)
if is_train and cfg['MODEL']['INIT_WEIGHTS']:
model.init_weights(cfg['MODEL']['PRETRAINED'])
return model
使用了PoseHighresolutionNet类,让我们进入到这个类看一下。
首先看forward函数:
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu(x)
x = self.layer1(x)
所对应的stem net为:
# stem net
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1,
bias=False)
self.bn1 = nn.BatchNorm2d(64, momentum=BN_MOMENTUM)
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1,
bias=False)
self.bn2 = nn.BatchNorm2d(64, momentum=BN_MOMENTUM)
self.relu = nn.ReLU(inplace=True)
self.layer1 = self._make_layer(Bottleneck, 64, 4)
这里经过两个卷积bn激活函数的操作,后接一个layer1模块,特征通道数下采样4倍,通道变为256.
其中layer1由_make_layer(Bottleneck, 64, 4)构建。
layer1函数
让我们看下_make_layer的具体操作。
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(
self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False
),
nn.BatchNorm2d(planes * block.expansion, momentum=BN_MOMENTUM),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
# 通道数由64变为256
self.inplanes = planes * block.expansion
# self.inplanes = 64 * 4 = 256
for i in range(1, blocks):
# 重复堆叠三次,不使用downsample,其实这里的downsample操作也并没有进行下采样。
# 输入通道数为256,输出通道数也为256
# 最后得到特征图的大小为下采样4倍,输出通道256的featuremap
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
Bottleneck类中expansion = 4, self.inplanes = 64 != 64 *4 执行downsample操作。注意这里downsample并没有对模型进行下采样,stride= 1,只是沿用了Resnet的名称,叫成了downsample。
Bottleneck的搭建如下代码:
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self