flink配置启动时的JVM内存参数

解决Flink启动时内存不足的问题
在1GB内存的阿里云ECS上运行Flink遇到内存不足的问题,导致TaskManagers数量显示为0。通过查看错误日志发现Flink启动使用了1024m的JVM内存。为解决此问题,参考文章配置了flink-conf.yaml文件,将`env.java.opts`设置为`-Xms128m -Xmx256m`。初次尝试启动失败,调整选项格式去掉冒号后,成功启动Flink,TaskManagers恢复正常。
部署运行你感兴趣的模型镜像

在阿里云机器上安装了flink进行学习,但是因为此ECS只有1G的内存,在启动(方法 {flink path}./bin/start_cluster.sh)后,

发现虽然可以在8081端口可以查看到 Apache Flink Web Dashboard的前端页面,但是其中的TaskManagers 的数量是0。

随即发现,在flink的bin 目录中多了 _err_ 的log文件,打开文件,发现启动时,内存不足。

 

通过 ps -ef| grep flink查找flink的启动进程情况,发现flink是按照 -Xmx1024m 和 -Xms1024m的配置启动的。这明显超出了机器的配置,尤其是 -Xms1024m的配置。

 

因此,通过查找网上的配置方法,对flink的启动参数进行配置,以配置JVM启动内存:

主要参考:https://www.jianshu.com/p/85e56f188618

在 flink目录下的 ./conf/flink-conf.yaml 文件中,加入了

env.java.opts: -Xms:128m -Xmx:256m的设置。

然后重新尝试启动flink,发现直接启动失败,连8081端口也无法访问了。

此时,通过查看flink子目录log文件夹中的日志文件,发现启动报错:

Invalid initial heap size: -Xms:256m                                                                                                                                                                            
Error: Could not create the Java Virtual Machine.                                                                                                                                                               
Error: A fatal exception has occurred. Program will exit.       

经过考虑,应该是设置格式问题,将设置修改为(区别在去掉了冒号):

env.java.opts: -Xms128m -Xmx256m

 

重新启动,发现启动正常了,可以在前端看到如下情况:

您可能感兴趣的与本文相关的镜像

Linly-Talker

Linly-Talker

AI应用

Linly-Talker是一款创新的数字人对话系统,它融合了最新的人工智能技术,包括大型语言模型(LLM)、自动语音识别(ASR)、文本到语音转换(TTS)和语音克隆技术

<think>好的,用户现在想了解如何在Fink的YARN Session模式下设置TaskManager的JVM内存大小。首先,我需要回想一下之前用户的问题和我的回答。之前用户询问了JobManager和TaskManager日志的区别,现在转向了资源配置,尤其是内存设置。这说明用户可能正在实际部署Flink应用,遇到了性能调优的问题,或者正在准备环境配置。 接下来,我需要确认Flink在YARN Session模式下的配置方式。YARN作为资源管理框架,Flink作为其上的应用,需要遵循YARN的资源管理机制。YARN负责分配容器,每个TaskManager对应一个容器,容器的资源包括内存和CPU。Flink配置参数需要与YARN的资源配置协调,否则可能出现资源不足或浪费的情况。 用户的问题集中在TaskManager的JVM内存设置。这里有几个关键点:首先,Flink内存模型包括总内存JVM内存、堆外内存等部分。其次,在YARN模式下,需要同时设置Flink参数和YARN的资源请求参数,因为YARN会根据请求分配容器资源。如果只设置Flink参数而忽略YARN的配置,可能会导致容器内存不足,从而引发OOM错误。 我需要拆解配置步骤。首先,确定TaskManager的总内存,这包括JVM内存、堆外内存、网络缓冲、框架堆外等部分。然后,通过Flink配置文件或启动参数设置这些值。同时,YARN的容器内存需要至少等于TaskManager的总内存,否则YARN会杀死超用内存的容器。 常见的参数包括taskmanager.memory.process.size(或taskmanager.memory.flink.size,取决于版本),这个参数决定了Flink认为TaskManager需要的内存总量。同时,YARN的参数yarn.containers.vcores和yarn.container.memory需要对应设置,确保YARN分配的容器足够大。 另外,需要注意不同Flink版本之间的差异。例如,1.10之后的版本内存配置有所变化,引入了更细粒度的内存控制。用户可能使用的是较新版本,因此需要确认参数的正确性。同时,堆外内存的设置对于某些应用(如大量网络传输或使用原生内存的组件)非常重要,需要合理分配,避免OOM。 用户可能的误区是只设置JVM内存,而忽略了总内存和其他部分,导致YARN容器内存不足。因此,在回答中需要强调同时配置Flink和YARN参数的重要性,并提供示例配置,帮助用户理解各部分的关系。此外,常见问题如内存分配不足、参数冲突等也需要提及,帮助用户避免典型错误。 最后,应该总结步骤,强调验证方法,比如检查YARN的Web UI确认容器资源,或者查看日志中的内存分配信息,确保配置生效。这样用户可以实际操作并验证他们的配置是否正确。</think>在 Flink 的 **YARN Session 模式**下,设置 TaskManager 的 JVM 内存分配大小需要通过 Flink配置参数和 YARN 的资源请求参数协同完成。以下是具体配置方法和原理说明: --- ### 一、核心配置参数 Flink 的 TaskManager 内存由多个部分组成,需通过以下参数定义: | **参数名** | **作用** | |------------------------------------|-------------------------------------------------------------------------| | `taskmanager.memory.process.size` | **总内存**(JVM进程总内存,包括堆内外内存、网络缓冲、框架内存等,必须与 YARN 容器内存一致) | | `taskmanager.memory.jvm-metaspace` | JVM Metaspace 内存大小(默认 256MB) | | `taskmanager.memory.jvm-overhead` | JVM 开销内存(用于线程栈、本地内存等,默认总内存的 10%) | --- ### 二、配置步骤(YARN Session 模式) #### 1. **设置 Flink 配置文件(`flink-conf.yaml`)** 在 `flink-conf.yaml` 中直接定义 TaskManager 的内存参数: ```yaml # 设置 TaskManager 总内存(必须 <= YARN容器内存) taskmanager.memory.process.size: 4096m # 4GB # 可选:调整堆内存(默认总内存的约40%~50%) taskmanager.memory.jvm.heap.size: 2048m # 2GB # 可选:调整堆外内存(Direct Memory,用于网络缓冲等) taskmanager.memory.managed.fraction: 0.3 # 托管内存占比(默认0.4) ``` #### 2. **启动 YARN Session 时指定资源** 在启动命令中通过 `-D` 参数覆盖配置,并指定 YARN 容器的资源: ```bash ./bin/yarn-session.sh \ -D taskmanager.memory.process.size=4096m \ -D yarn.containers.vcores=2 \ # 每个容器的vCPU数量 -D yarn.container.memory=4096 \ # 每个容器的总内存(单位MB,必须 >= taskmanager.memory.process.size) -n 4 # 启动的TaskManager数量 ``` --- ### 三、内存分配逻辑 #### 1. **内存组成公式** Flink 会按以下规则分配内存: $$ \text{总内存} = \text{堆内存} + \text{堆外内存} + \text{网络缓冲} + \text{Metaspace} + \text{JVM开销} $$ #### 2. **参数优先级** - 如果显式指定 `taskmanager.memory.jvm.heap.size`,堆内存按指定值分配。 - 否则,堆内存按总内存的默认比例计算(例如:总内存的 40%)。 --- ### 四、验证配置是否生效 #### 1. **通过 YARN Web UI 检查** 访问 YARN ResourceManager Web UI(如 `http://<yarn-rm-host>:8088`),查看容器分配的内存是否与配置一致。 #### 2. **查看 TaskManager 日志** 在 TaskManager 启动日志中搜索以下内容: ```log INFO org.apache.flink.runtime.taskexecutor.TaskManagerRunner - Starting TaskManager with ResourceID: {...} JVM Memory Settings: - Total Process Memory: 4096mb - JVM Heap Size: 2048mb - Managed Memory Size: 1228mb ... ``` --- ### 五、常见问题与调优建议 1. **容器被 YARN 杀死(OOM)** - 原因:`yarn.container.memory` < `taskmanager.memory.process.size`。 - 解决:确保 YARN 容器内存 >= Flink 配置的总内存。 2. **堆外内存不足(`OutOfMemoryError: Direct buffer memory`)** - 原因:网络缓冲或 RocksDB 使用过多 Direct Memory。 - 解决:增大 `taskmanager.memory.process.size` 并调整 `taskmanager.memory.managed.fraction`。 3. **Metaspace 溢出** - 原因:动态加载类过多(如频繁部署作业)。 - 解决:显式设置 `taskmanager.memory.jvm-metaspace.size=512m`。 --- ### 六、完整配置示例 ```yaml # flink-conf.yaml taskmanager.memory.process.size: 8192m # 总内存 8GB taskmanager.memory.jvm.heap.size: 4096m # 堆内存 4GB taskmanager.memory.managed.fraction: 0.4 # 托管内存占40% taskmanager.memory.jvm-metaspace.size: 512m taskmanager.memory.jvm-overhead.min: 512m ``` 启动命令: ```bash ./bin/yarn-session.sh \ -D yarn.container.memory=8192 \ -D yarn.containers.vcores=4 \ -n 6 ``` --- ### 总结 - **核心原则**:确保 YARN 容器内存 >= Flink TaskManager 配置的总内存。 - **调优重点**:根据作业特性(如批处理/流处理、状态后端类型)平衡堆内存与堆外内存。 - **验证手段**:通过 YARN UI 和 TaskManager 日志双重确认配置生效。
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值