from numpy import * '''numpy科学计算包,在抽象和处理矩阵运算上具有优势'''
import operator
'''导入数据,创建数据集和标签'''
def createDataSet():
group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
labels = ['A','A','B','B']
return group,labels
'''实施kNN算法,构造分类器'''
'''inX:进行分类的数据;dataSet:训练样本集;labels:标签向量;k:KNN算法的参数k,用来选择最近邻居'''
def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0] '''读取矩阵dataSet第一维度的长度即行数'''
diffMat = tile(inX, (dataSetSize,1)) - dataSet '''将待进行分类的数据复制dataSetSize份,diffMat得到了目标与训练数值之间的差值'''
sqDiffMat = diffMat**2 '''各个元素分别平方'''
sqDistances = sqDiffMat.sum(axis=1) '''每一行元素之和'''
distances = sqDistances**0.5'''开方求距离'''
sortedDistIndicies = distances.argsort() '''将distance进行排序:由小到大'''
classCount={}
'''选择距离最小的K个点'''
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1 '''统计最后出现结果的不同标签值的数量,出现一次便加1,以此类推'''
sortedclassCount = sorted(classCount.iteritems(),key=operator.itemgetter(1),reverse=True)'''按照从大到小的次序排序,最后返回发生频率最高的元素标签'''
return sortedclassCount[0][0]
def file2matrix(filename):
fr = open(filename)
arrayOLines = fr.readlines() '''按行读取文件'''
numberOfLines = len(arrayOLines) '''文件的函数即为返回矩阵的行数'''
returnMat = zeros((numberOfLines,3)) '''创建行数为numberOfLines,列数为3的0矩阵'''
classLabelVector = []
index = 0
for line in arrayOLines:
line = line.strip()
listFromLine = line.split('\t')
returnMat[index,:] = [0:3]
classLabelVector.append(int (listFromLine[-1])) '''将列表的最后一列存储在classLabelVector中,此处明确的通知解释器列表所存储的元素值为整型,否则Python语言会将这些元素当做字符串来处理'''
index += 1
return returnMat,classLabelVector
'''归一化特征值'''
def autoNorm(dataSet):
minVals = dataSet.min(0)
maxVals = dataSet.max(0)
ranges = maxVals - minVals
normDataSet = zeros(shape(dataSet))
m = dataSet.shape[0]
normDataSet = dataSet - tile(minVals, (m,1))
normDataSet = normDataSet/tile(ranges, (m,1))
return normDataSet, ranges, minVals
'''分类器针对约会网站的测试代码'''
def datingClassTest():
hoRatio = 0.50
datingDataMat,datingLabels = file2matrix('datingTestSet2.txt')
normMat, ranges, minVals = autoNorm(datingDataMat)
m = normMat.shape[0]
numTestVecs = int(m*hoRatio)
errorCount = 0.0
for i in range(numTestVecs):
classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3)
print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, datingLabels[i])
if (classifierResult != datingLabels[i]): errorCount += 1.0
print "the total error rate is: %f" % (errorCount/float(numTestVecs))
print errorCount