最长公共子序列的简单应用。。。
状态:dp[i][j]表示串a[0。。。i]和串b[0。。。j]的最长公共子序列【lcs】。
状态转移:dp[i][j] = {if(a[i]==b[j]) dp[i][j] = dp[i-1][j-1]+1;
if(a[i]!=b[j]) dp[i][j] = max(dp[i-1][j],dp[i][j-1]);}
代码如下:
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define M 105
char a[M], b[M];
int n1, n2, dp[M][M];
int lcm()
{
n1 = strlen(a); n2 = strlen(b);
for(int i = 0; i <= n1; i++) dp[i][0] = 0;
for(int i = 0; i <= n2; i++) dp[0][i] = 0;
for(int i = 1; i <= n1; i++)
for(int j = 1; j <= n2; j++)
{
if(a[i-1]==b[j-1]) dp[i][j] = dp[i-1][j-1]+1;
else dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
}
return dp[n1][n2];
}
int main ()
{
int cas = 0;
while(gets(a))
{
if(a[0]=='#') break;
gets(b);
printf("Case #%d: you can visit at most %d cities.\n",++cas,lcm());
}
return 0;
}