gpiolib文档

自己翻译的内核gpiolib文档,是2.6.38版本的。原文在:http://lxr.linux.no/linux+v2.6.38/Documentation/gpio.txt

内核文档

2011/05/08

标识端口
-------------

gpio使用0~MAX_INT之间的整数标识,不能使用负数。
使用以下函数检查一个端口号的合法性:
int gpio_is_valid(int number);

? 使用gpio
-------------
使用io的第一步是分配端口,使用 gpio_request()。
接下来要做的是标记它的方向。
 int gpio_direction_input(unsigned gpio);
 int gpio_direction_output(unsigned gpio, int value);
通常应该检查它们的返回值。通常应该假定这两个接口会在线程上下文中调用。但是
对于自旋锁安全的gpio也可以在线程出现之前的早期初始化之间使用。

对于输出的gpio,提供的值作为输出的初始值。

? 使用自旋锁安全的gpio
----------------------------------
大部分gpio控制器可以使用内存读写指令来访问,不需要睡眠,可以在中断上下文访问。

对于gpio_cansleep返回假的gpio可以使用下面的接口访问:
int gpio_get_value(unsigned gpio);
void gpio_set_value(unsigned gpio, int value);
返回的值是布尔值,零代表低,非零代表搞电平。当读取输出引脚的值,返回值应该是引脚上的实际状态,
这个值不一定等于配置的输出值,因为从设定信号到信号稳定需要一定时间。

不是所有的平台可以读取输出的引脚值,这些平台不能总是返回零。用这两这两个函数访问
不能非在睡眠的上下文中安全访问的gpio将是一个错误。

? 可被休眠上下文中访问的GPIO
----------------------------------------------
一些gpio控制器必须使用基于信息的总线,比如i2c和spi.读写gpio值的命令需要在队列中等待。
操作这些gpio可能会睡眠,不能在中断上下文中调用。

支持这种gpio的平台为了通过在这个函数中返回非零来区分其它
类型的gpio(需要一个已经被gpio_request申请的gpio号):
int gpio_cansleep(unsigned gpio);

为了访问这些端口,定义了另一组函数接口:
int gpio_get_value_cansleep(unsigned gpio);
void gpio_set_value_cansleep(unsigned gpio, int value);
只能在允许睡眠的上下文中访问这些端口,比如线程化的中断中,
必须使用这些接口而不是没有cansleep前缀的自旋锁安全接口。


除了这些接口可能睡眠这个事实之外,它们操作那些不能在中断处理函数中访问的端口,这些调用的表现和
自旋锁安全的调用表现一致。

另外:调用安装和配置这样的gpio必须是在可睡眠的上下文中,因为他们可能需要访问gpio控制器。
        gpio_direction_input()
        gpio_direction_output()
        gpio_request()

##      gpio_request_one()
##      gpio_request_array()
##      gpio_free_array()

        gpio_free()
         gpio_set_debounce()


? 申请和释放gpio
------------------------
为了获取系统配置错误,定义了两个调用:
int gpio_request(unsigned gpio, const char *label);
void gpio_free(unsigned gpio);
应该假设这两个函数实在进程上下文中调用的,但对于自旋锁安全的gpio也可从
在进程建立之前的早期启动过程中调用。

考虑到大多数情况下gpio会在申请过后立即需要被配置,下面三个接口负责这些工作:
int gpio_request_one(unsigned gpio, unsigned long flags, const char *label);
int gpio_request_array(struct gpio *array, size_t num);
void gpio_free_array(struct gpio *array, size_t num);

“falg”用来配置下面的特性:
 
         * GPIOF_DIR_IN          - 配置方向为输入
         * GPIOF_DIR_OUT         -配置方向为输出
 
         * GPIOF_INIT_LOW        - 做输出引脚,输出低电平
         * GPIOF_INIT_HIGH       - 做输出引脚,输出高电平

为了同时处理多个gpio,定义了一个专门结构体:
         struct gpio {
                 unsigned        gpio;
                 unsigned long   flags;
                 const char      *label;
         };

典型的使用如下:
 327        static struct gpio leds_gpios[] = {
 328                { 32, GPIOF_OUT_INIT_HIGH, "Power LED" },
 329                { 33, GPIOF_OUT_INIT_LOW,  "Green LED" },
 330                { 34, GPIOF_OUT_INIT_LOW,  "Red LED"   },
 331                { 35, GPIOF_OUT_INIT_LOW,  "Blue LED"  },
 332                { ... },
 333        };
 334
 335        err = gpio_request_one(31, GPIOF_IN, "Reset Button");
 336        if (err)
 337                ...
 338
 339        err = gpio_request_array(leds_gpios, ARRAY_SIZE(leds_gpios));
 340        if (err)
 341                ...
 342
 343        gpio_free_array(leds_gpios, ARRAY_SIZE(leds_gpios));
   
  • GPIO映射到IRQ
----------------------------
 352       
 353        int gpio_to_irq(unsigned gpio);
 354
 355       
 356        int irq_to_gpio(unsigned irq);
返回值是对应的编号或者是负的错误码。使用未用gpio_direction_input()安装的gpio编号或者不是从
gpio_to_irq()得到的中断号是不会被gpio检查的错误。

gpio_to_irq()返回的中断编号可以传给request_irq()和free_irq()。
irq_to_gpio()返回的gpio编号通常用来调用gpio_get_value(),比如在沿触发的中断中获取引脚的状态。
有些平台不支持这种映射,应该避免调用映射函数。

模拟漏极开路
------------------
gpio可能支持也可能不支持漏极开路输出。如果硬件不支持,可以模拟漏极开路输出的输入或者输出:
LOW:    gpio_direction_output(gpio, 0)  忽略上拉电阻。
HIGH:    gpio_direction_input(gpio) 关闭输出,上拉电阻控制信号。
如果驱动输出高电平但是gpio_get_value(gpio)报告的电平是低电平(经过一定延迟之后),可以断定
其它部分正在信号线上输出低电平。

GPIO 的框架(可选)
===============
GPIO的框架在gpiolib中实现。
如果使能了 debugfs,系统下会出现 /sys/kernel/debug/gpio这个文件。这个文件内
将会列出所有注册在框架内的控制器和当前使用的gpio的状态。
在gpio框架中使用"struct gpio_chip"表示每个控制器的所有信息:
--设置gpio方向的方法
--访问gpio状态的方法
--表示是否会睡眠的标志
--可选的debugfs方法
--诊断用的标签lable(char指针)
当然还有每个实例的独有数据(可能来自dev.platform_data);第一个gpio的编号和管理的gpio数量。

gpiolib支持多个gpio控制器的实例,使用gpiochip_add()来注册,使用gpiochip_remove()注销。
gpio_chip的debugfs方法将会忽略未被申请的gpio。使用gpiochip_is_requested()将会返回NULL(未被申请)或者
lable(已被申请)

平台支持
------------
为了支持gpio框架,必须选择Kconfig中的选项:ARCH_REQUIRE_GPIOLIB 或者 ARCH_WANT_OPTIONAL_GPIOLIB。并且
在 包含,还要定义三个函数: gpio_get_value(), gpio_set_value(), and gpio_cansleep().
同时也可以提供ARCH_NR_GPIOS的定义,以反映平台支持的gpio数量。

ARCH_REQUIRE_GPIOLIB表示gpiolib代码总是会编译进内核中。
ARCH_WANT_OPTIONAL_GPIOLIB表示gpiolib默认是关闭的,但是用户可以使能它并把它编译进内核。
如果这两个选项一个都未被选中,gpiolib则不能被用户使能。

通常那三个函数接口可以直接使用框架内的代码(通过gpio_chip来调用):
             #define gpio_get_value        __gpio_get_value
             #define gpio_set_value        __gpio_set_value
             #define gpio_cansleep         __gpio_cansleep


用户空间的sysfs接口(可选)
==================

在sysfs下的路径
---------------------
在/sys/class/gpio下有三种类型的入口:
            --用户空间控制GPIO的接口(第一类)
            --对应具体GPIO
            --GPIO控制器("gpio_chip"的实例)(第三类)
以上接口不包括标准“device”文件和它们的链接。

控制接口(第一类)是只写的:
            /sys/class/gpio/
                        "export" 用户空间通过写入gpio的编号来向内核申请将某个gpio的控制权导出到用户空间
                                    比如“echo 19 > export ”将会为19号gpio创建一个节点“gpio19”,前提是没有内和代码申请了这个端口。
                        “unexport” 和导出的效果相反。
                                    比如“echo 19 > unexport”将会移除“gpio19”这个节点。
GPIO管脚的路径类似于/sys/class/gpio/gpio42/ (for GPIO #42)的形式,并且有以下可读写的属性:
            /sys/class/gpio/gpioN/   (第二类)
                        “direction” 读取结果是“in”或者“out”。也可以往其中写入。写入“out”默认将引脚值初始化为低。
                                    写入“low”或“high”可以初始化作为输出时的初始值。
                                    如果内核不支持或者内核代码不愿意,将不会存在这个属性。
                        “value” 读取结果是0(低电平)或1(高电平)。如果GPIO被配置为输出,这个值是可写的,
                                    任何非零的值都将输出高电平。
                                    如果某个引脚能并且已经被配置为产生中断,可以在它的节点上调用poll(2)并且poll(2)将在中断触发后返回。
                                    如果使用poll(2),设置事件类型为POLLPRI和POLLERR。如果使用sellect(2),将文件描述符加入exceptfds。
                                    在poll(2)返回后,可以使用lseek(2)移动到文件开头读取新的值或者关闭它再重新打开读取新值。
                        “edge”   读取改节点将会得到以下值: "none", "rising", "falling",或者  "both"。写如这些字符串到这个节点中将会选择
                                    唤醒在“value”上的poll(2)的信号沿。
                                    这个文件节点只有在引脚能被配置为输入中断引脚的时候才存在。
                        "active_low" 读取值是0(假)或者1(真)。写入任何非零的值都将反转“value”中读取和写入的值。
                                    已经在使用和之后使用poll(2)的“edge”节点的“rasing”和“falling”值将会受"active_low" 的影响。
                                    (自己的理解:这个值实际是将高变为0,低变为1。也就是实现了逻辑反转。)

GPIO控制器的路径类似于/sys/class/gpio/gpiochip42/(这个控制器的最小端口是42)并且有以下的读写属性:
            /sys/class/gpio/gpiochipN/
                        “base” 和N相同,也就是控制器管理的最小的端口编号。
                        “lable”  诊断使用的标志(并不总是唯一的)
                        “ngpio” 控制器管理的端口数量(端口范围是:N ~ N+ngpio-1)
从内核空间中导出
------------------------
内核可以对已经被 gpio_request()申请的gpio的导出进行明确的管理。
          
            int gpio_export(unsigned gpio, bool direction_may_change);
          
            void gpio_unexport();
          
            int gpio_export_link(struct device *dev, const char *name, unsigned gpio)
          
            int gpio_sysfs_set_active_low(unsigned gpio, int value);


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
以上内容是内核文档的内容,下面分析gpio_chip的内容,这是一个控制器。
  48

struct gpio_chip {
  91        const char              *label;
  92        struct device           *dev;
  93        struct module           *owner;
  94
  95        int                     (*request)(struct gpio_chip *chip,
  96                                                unsigned offset);
  97        void                    (*free)(struct gpio_chip *chip,
  98                                                unsigned offset);
  99
 100        int                     (*direction_input)(struct gpio_chip *chip,
 101                                                unsigned offset);
 102        int                     (*get)(struct gpio_chip *chip,
 103                                                unsigned offset);
 104        int                     (*direction_output)(struct gpio_chip *chip,
 105                                                unsigned offset, int value);
 106        int                     (*set_debounce)(struct gpio_chip *chip,
 107                                                unsigned offset, unsigned debounce);
 108
 109        void                    (*set)(struct gpio_chip *chip,
 110                                                unsigned offset, int value);
 111
 112        int                     (*to_irq)(struct gpio_chip *chip,
 113                                                unsigned offset);
 114
 115        void                    (*dbg_show)(struct seq_file *s,
 116                                                struct gpio_chip *chip);
 117        int                     base;
 118        u16                     ngpio;
 119        const char              *const *names;
 120        unsigned                can_sleep:1;
 121        unsigned                exported:1;
 122
 123#if defined(CONFIG_OF_GPIO)
 124       
 128        struct device_node *of_node;
 129        int of_gpio_n_cells;
 130        int (*of_xlate)(struct gpio_chip *gc, struct device_node *np,
 131                        const void *gpio_spec, u32 *flags);
 132#endif
 133};

gpio_chip的接口:
extern const char *gpiochip_is_requested(struct gpio_chip *chip, unsigned offset); 如果offet对应的gpio已经被申请了则返回NULL,否则返回lable指针或者“??”


extern int __must_check gpiochip_reserve(int start, int ngpio);
将start开始的ngpio个编号保留
这个函数是在全局范围内预留一段编号,将来供某个gpio_chip使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值