YOLOv11目标检测创新改进与实战案例专栏
文章目录: YOLOv11创新改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例
专栏链接: YOLOv11目标检测创新改进与实战案例
文章目录
介绍
摘要
摘要——滑坡是一种广泛且具有毁灭性的自然灾害,对人类生命、安全和自然资产构成严重威胁。研究利用遥感影像进行滑坡精准检测的高效方法具有重要的学术和实际意义。本文提出了一种新颖且有效的滑坡检测模型LS-YOLO,利用遥感影像进行滑坡检测。我们首先构建了一个多尺度滑坡数据集(MSLD),并在数据增强中引入随机种子以增加数据的鲁棒性。考虑到遥感影像中滑坡的多尺度特性,设计了基于高效通道注意力、平均池化和空间可分离卷积的多尺度特征提取模块。为了增加模型的感受野,在解耦头中采用了膨胀卷积。