《Discrete Mathematic with Applications》读书笔记一

本文是《Discrete Mathematics with Applications》第一章的读书笔记,主要讨论了复合陈述的逻辑形式、逻辑等价、条件陈述、有效与无效论证以及在数字逻辑电路中的应用。介绍了逻辑运算的优先级、摩根定律、重言式和悖论,并探讨了条件陈述的否定、逆否命题以及必要性和充分条件。此外,还涉及有效论证的形式、谬误和数字逻辑电路中的门电路规则。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Chapter1 The logic of compound statement


1.1 Logic Form and Logic Equivalence.

Translate the natural english argument to logic notation.

such as if p or q, then r.


Def1:

Proposition(statement):  A sentence that is true of false but not both.


exp he is a student. (is not a proposition, the truth and falsity depends on he)

x+y>0 (is not a proposition, the truth and falsity depends on variable X and Y)


Compound statement(proposition)

~ not (~p  negation of p)

^ and(p^q   conjunction of p and q)

V or (p V q  disjunction of p an q)




Order of operation: ~  > ^  = V

English word, and ,but(^)  , not (~),  or (V) 

Neither p nor q   (~p and ~q)


for inequality a < x < b.

The point of specifying x, a and b to particular real numbers is to ensure that sentence such as "x <a" and "x >=b"

are either true or false and hence that they a statements(proposition).


Truth Value


The negation of a statement is a statement that exactly expresses what it would mean for the statement to be false.

So the negation of a statement has opposite truth value from the statement.







intuitive logic, or sometimes mean exclusive(p or q but not both)   sometimes inclusive (p or q or both)

In formal logic, the or means inclusive

xor means exclusive






Exp 1.1.5 Construct the truth table for Exclusive or (XOR)

(p V q) ^ ~(p ^ q)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值