pytorch基础

学习地址

%matplotlib inline

https://github.com/MorvanZhou/PyTorch-Tutorial

https://morvanzhou.github.io/tutorials/

201torch-numpy

import torch
torch_data = torch.from_numpy(np_data)  #torch.from_numpy:array转换成tensor向量
tensor2array = torch_data.numpy() #data.numpy():tensor向量转换成array
'''转化为tensor'''
tensor = torch.FloatTensor(data)  # 32-bit floating point
'''计算'''  np.和torch。类似
torch.abs(tensor)
torch.sin(tensor)
torch.mean(tensor)
torch.mm(tensor, tensor)
#tensor.dot(tensor) #不行报错
​

202变量

from torch.autograd import Variable
'''构造用于梯度下降的'''
tensor = torch.FloatTensor([[1,2],[3,4]])            # build a tensor
variable = Variable(tensor, requires_grad=True)  #the variable is a part of the graph, it's a part of the auto-gradient.
​
v_out = torch.mean(variable*variable)   # x^2
v_out.backward()    # backpropagation from v_out

203激活

 

import torch
import torch.nn.functional as F
from torch.autograd import Variable
import matplotlib.pyplot as plt
%matplotlib inline
# fake data
x = torch.linspace(-5, 5, 200)  # x data (tensor), shape=(100, 1)
x = Variable(x)
x_np = x.data.numpy()   # numpy array for plotting
​
# following are popular activation functions
y_relu = torch.relu(x).data.numpy()
y_sigmoid = torch.sigmoid(x).data.numpy()
y_tanh = torch.tanh(x).data.numpy()
y_softplus = F.softplus(x).data.numpy() # there's no softplus in torch
# y_softmax = torch.softmax(x, dim=0).data.numpy() softmax is a special kind of activation function, it is about probability
​
# plt to visualize these activation function
plt.figure(1, figsize=(8, 6))
plt.subplot(221)
plt.plot(x_np, y_relu, c='red', label='relu') #sigmoid
plt.ylim((-1, 5))  #((-0.2, 1.2))sigmoid, ((-1.2, 1.2))tanh  ((-0.2, 6)) softplus
plt.legend(loc='best')
​
plt.show()

301回归分类

x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)  # x data (tensor), shape=(100, 1)
y = x.pow(2) + 0.2*torch.rand(x.size())                 # noisy y data (tensor), shape=(100, 1)
​
class Net(torch.nn.Module):
    def __init__(self, n_feature, n_hidden, n_output):
        super(Net, self).__init__()
        self.hidden = torch.nn.Linear(n_feature, n_hidden)   # hidden layer
        self.predict = torch.nn.Linear(n_hidden, n_output)   # output layer
​
    def forward(self, x):
        x = F.relu(self.hidden(x))      # activation function for hidden layer
        x = self.predict(x)           '''分类 x = self.out(x)  '''  
        return x
​
net = Net(n_feature=1, n_hidden=10, n_output=1)     '''分类 n_output=2'''
print(net)  # net architecture
#Net((hidden): Linear(in_features=1, out_features=10, bias=True) (predict): Linear(in_features=10, out_features=1, bias=True))
optimizer = torch.optim.SGD(net.parameters(), lr=0.2)
loss_func = torch.nn.MSELoss()  # this is for regression mean squared loss
'''分类
optimizer = torch.optim.SGD(net.parameters(), lr=0.02)
loss_func = torch.nn.CrossEntropyLoss()  # the target label is NOT an one-hotted
'''
​
for t in range(200):
    prediction = net(x)    ''' 分类改成out = net(x)  '''    
    loss = loss_func(prediction, y)     # must be (1. nn output, 2. target)
    optimizer.zero_grad()   # clear gradients for next train
    loss.backward()         # backpropagation, compute gradients
    optimizer.step()        # apply gradients
​
    '''分类'''
n_data = torch.ones(100, 2)
x0 = torch.normal(2*n_data, 1)      # class0 x data (tensor), shape=(100, 2)
y0 = torch.zeros(100)               # class0 y data (tensor), shape=(100, 1)
x1 = torch.normal(-2*n_data, 1)     # class1 x data (tensor), shape=(100, 2)
y1 = torch.ones(100)                # class1 y data (tensor), shape=(100, 1)
x = torch.cat((x0, x1), 0).type(torch.FloatTensor)  # shape (200, 2) FloatTensor = 32-bit floating
y = torch.cat((y0, y1), ).type(torch.LongTensor)    # shape (200,) LongTensor = 64-bit integer
​
​

pyplot

交互模式

'''展示动态图或多个窗口呢?这就要使用plt.ion()这个函数
,使matplotlib的显示模式转换为交互(interactive)模式
。即使在脚本中遇到plt.show(),代码还是会继续执行
在plt.show()之前一定不要忘了加plt.ioff(),如果不加,界面会一闪而过,并不会停留'''
​
import matplotlib.pyplot as plt
plt.ion()    # 打开交互模式
# 同时打开两个窗口显示图片
plt.figure()  #图片一
plt.imshow(i1)
plt.figure()    #图片二
plt.imshow(i2)
# 显示前关掉交互模式
plt.ioff()
plt.show()
​

画图

plt.figure(1, figsize=(10, 3))
plt.subplot(131)
plt.title('Net1')
plt.scatter(x.data.numpy(), y.data.numpy())
plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
    # plot result
plt.subplot(132)
。。。
plt.subplot(133)
plt.title('Net3')
。。。
plt.show()

 

303build_ nn_ quick

import torch
import torch.nn.functional as F
​
​
# replace following class code with an easy sequential network
class Net(torch.nn.Module):
    def __init__(self, n_feature, n_hidden, n_output):
        super(Net, self).__init__()
        self.hidden = torch.nn.Linear(n_feature, n_hidden)   # hidden layer
        self.predict = torch.nn.Linear(n_hidden, n_output)   # output layer
​
    def forward(self, x):
        x = F.relu(self.hidden(x))      # activation function for hidden layer
        x = self.predict(x)             # linear output
        return x
​
net1 = Net(1, 10, 1)
​
# easy and fast way to build your network
net2 = torch.nn.Sequential(
    torch.nn.Linear(1, 10),
    torch.nn.ReLU(),
    torch.nn.Linear(10, 1)
)
​
​
print(net1)     # net1 architecture
"""
Net (
  (hidden): Linear (1 -> 10)
  (predict): Linear (10 -> 1)
)
"""
​
print(net2)     # net2 architecture
"""
Sequential (
  (0): Linear (1 -> 10)
  (1): ReLU ()
  (2): Linear (10 -> 1)
)
"""

304save_reload

'''主要模块'''
torch.save(net1, 'net.pkl')  # save entire net
torch.save(net1.state_dict(), 'net_params.pkl')   # save only the parameters
net2 = torch.load('net.pkl')
net3.load_state_dict(torch.load('net_params.pkl'))
'''#具体'''
    # fake data
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)  # x data (tensor), shape=(100, 1)
y = x.pow(2) + 0.2*torch.rand(x.size())  # noisy y data (tensor), shape=(100, 1)
def save():
    # save net1
    net1 = torch.nn.Sequential(
        torch.nn.Linear(1, 10),
        torch.nn.ReLU(),
        torch.nn.Linear(10, 1)
    )
    optimizer = torch.optim.SGD(net1.parameters(), lr=0.5)
    loss_func = torch.nn.MSELoss()
​
    for t in range(100):
        prediction = net1(x)
        loss = loss_func(prediction, y)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
​
    # 2 ways to save the net
    torch.save(net1, 'net.pkl')  # save entire net
    torch.save(net1.state_dict(), 'net_params.pkl')   # save only the parameters
​
def restore_net():
    # restore entire net1 to net2
    net2 = torch.load('net.pkl')
    prediction = net2(x)
​
def restore_params():
    # restore only the parameters in net1 to net3
    net3 = torch.nn.Sequential(
        torch.nn.Linear(1, 10),
        torch.nn.ReLU(),
        torch.nn.Linear(10, 1))
​
    # copy net1's parameters into net3
    net3.load_state_dict(torch.load('net_params.pkl'))
    prediction = net3(x)
​
save()# save net1
restore_net()# restore entire net (may slow)
restore_params()# restore only the net parameters
​

305batch

​
import torch.utils.data as Data
torch.manual_seed(1)    # reproducible
BATCH_SIZE = 5
​
x = torch.linspace(1, 10, 10)       # this is x data (torch tensor)
y = torch.linspace(10, 1, 10)       # this is y data (torch tensor)
​
torch_dataset = Data.TensorDataset(x, y)
loader = Data.DataLoader(
    dataset=torch_dataset,      # torch TensorDataset format
    batch_size=BATCH_SIZE,      # mini batch size
    shuffle=True,               # random shuffle for training
    num_workers=2,              # subprocesses for loading data
)
​
def show_batch():
    for epoch in range(3):   # train entire dataset 3 times
        for step, (batch_x, batch_y) in enumerate(loader):  # for each training step
            # train your data...
            print('Epoch: ', epoch, '| Step: ', step, '| batch x: ',
                  batch_x.numpy(), '| batch y: ', batch_y.numpy())
​
​
if __name__ == '__main__':
    show_batch()
'''Epoch:  0 | Step:  0 | batch x:  [ 5.  7. 10.  3.  4.] | batch y:  [6. 4. 1. 8. 7.]
Epoch:  0 | Step:  1 | batch x:  [2. 1. 8. 9. 6.] | batch y:  [ 9. 10.  3.  2.  5.]Epoch:  0 | Step:  0 | batch x:  [ 5.  7. 10.  3.  4.] | batch y:  [6. 4. 1. 8. 7.]
Epoch:  0 | Step:  1 | batch x:  [2. 1. 8. 9. 6.] | batch y:  [ 9. 10.  3.  2.  5.]'''
​

306优化

if __name__ == '__main__':
    # different nets
    net_SGD         = Net()
    net_Momentum    = Net()
    net_RMSprop     = Net()
    net_Adam        = Net()
    nets = [net_SGD, net_Momentum, net_RMSprop, net_Adam]
​
    # different optimizers
    opt_SGD         = torch.optim.SGD(net_SGD.parameters(), lr=LR)
    opt_Momentum    = torch.optim.SGD(net_Momentum.parameters(), lr=LR, momentum=0.8)
    opt_RMSprop     = torch.optim.RMSprop(net_RMSprop.parameters(), lr=LR, alpha=0.9)
    opt_Adam        = torch.optim.Adam(net_Adam.parameters(), lr=LR, betas=(0.9, 0.99))
    optimizers = [opt_SGD, opt_Momentum, opt_RMSprop, opt_Adam]
​
    loss_func = torch.nn.MSELoss()
    losses_his = [[], [], [], []]   # record loss
​
    # training
    for epoch in range(EPOCH):
        print('Epoch: ', epoch)
        for step, (b_x, b_y) in enumerate(loader):          # for each training step
            for net, opt, l_his in zip(nets, optimizers, losses_his):
                output = net(b_x)              # get output for every net
                loss = loss_func(output, b_y)  # compute loss for every net
                opt.zero_grad()                # clear gradients for next train
                loss.backward()                # backpropagation, compute gradients
                opt.step()                     # apply gradients
                l_his.append(loss.data.numpy())     # loss recoder
​
    labels = ['SGD', 'Momentum', 'RMSprop', 'Adam']
    for i, l_his in enumerate(losses_his):
        plt.plot(l_his, label=labels[i])
    plt.legend(loc='best')
    plt.xlabel('Steps')
    plt.ylabel('Loss')
    plt.ylim((0, 0.2))
    plt.show()

401CNN

plt.imshow(train_data.train_data[0].numpy(), cmap='gray') #看图片
#获取数据
train_data = torchvision.datasets.MNIST(
    root='./mnist/',
    train=True,                                     # this is training data
    transform=torchvision.transforms.ToTensor(),    # Converts a PIL.Image or numpy.ndarray to                                                # torch.FloatTensor of shape (C x H x W) and normalize in the range [0.0, 1.0]
    download=DOWNLOAD_MNIST,
)
​

变量

from torch.autograd import Variable

深度学习课程学到

 

  • mm只能进行矩阵乘法,也就是输入的两个tensor维度只能是(n×m)(n×m)(n×m)(n×m)(n×m) (n\times m)(n×m)(n×m)(n×m)(b×n×p), 第一维b代表batch_size

  • matmul可以进行张量乘法, 输入可以是高维.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值