推荐论文-推荐相关经验总结

Xavier在Quora和Netflix的工作中总结了10条构建推荐系统的关键经验,强调了隐式反馈、训练数据的重要性,以及矩阵分解、特征工程、评估策略的作用。工业界广泛采用的模型包括Logistic回归、矩阵分解和梯度提升决策树。值得关注的是YouTube、Spotify等公司应用深度学习和MAB方法进行推荐。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Lessons Learned from Building Real­-Life Recommender Systems

推荐总结

2016Recsys会议分享

http://www.woshipm.com/pd/480396.html 

Xavier介绍了其在Quora和Netflix构建推荐系统时的10条经验:
(1) Implicit feedback is more important:有时需要将显示反馈与隐式反馈结合起来
(2) 认真考虑训练数据:定义合理的正负例
(3) 推荐的解释有时比预测准确率重要
(4) MF是最好的single approach,MF的变形包括FM,SVD++,ALS等;Quora开源了他们的MF模型QMF
(5) Ensemble is the master algorithm
(6) Feature Engineering: 需要理解领域信息,了解推荐目的和用户需求,将以上信息转化为特征;好的特征具有如下特点:reusable, transformable, interpretable, reliable; 深度学习也是构建特征的一种方法
(7) 合理的评价策略
i. Offline vs. online: a critical issue is how offline metrics correlate with A/B test results
ii. Long-term metric (member retention) vs. short-term metric 
(8) Model debuggability: to determine particular model to use; features to rely on; implementation of tools

推荐模型和技术
在推荐系统中被工业界广泛使用的有效的模型主要有:logistic regression,matrix factorization,Gradient boosting decision tree,其中LR被广泛用于CTR的预估;matrix factorization模型包括SVD++,factorization machine,ALS等方法,是工业很推崇的方法;今年RecSys challenge的前三名均使用GBDT的方法。其他被工业界使用的技术还包括:SGD,采样,哈希,L1&L2正则,实时流数据分析等;Spotify还声称他们用了MAB的方法。
YouTube Recommendation使用了深度学习技术,用于候选集的生成和排序

 值得关注的论文
1. A Scalable Approach for Periodical Personalized Recommendations
2. Adaptive, Personalized Diversity for Visual Discovery 
3. Field-aware Factorization Machines for CTR Prediction 
4. Local Item-Item Models for Top-N Recommendation  (Best paper)
5. Mechanism Design for Personalized Recommender Systems 
6. Deep Neural Networks for YouTube Recommendations 
7. Past, Present, and Future of Recommender Systems: An Industry Perspective (author:Xavier Amatriain)
8. Algorithms Aside: Recommendation as the Lens Of Life  (演讲的胶片非常艺术流)
9. Meta-Prod2Vec - Product Embeddings Using Side-Information for Recommendation
10. Are You Influenced by Others When Rating? Improve Rating Prediction by Conformity Modeling (余勇老师组做的工作)
工业界的几篇论文:
1. When Recommendation Systems Go Bad  (meetup)
2. News Recommendations at scale at Bloomberg Media: Challenges and Approaches (Bloomber)
3. Marsbot: Building a Personal Assistant (Foursqure)
4. Music Personalization at Spotify (Spotify)
5. Recommending for the World (Netflix)
6. The Exploit-Explore Dilemma in Music Recommendation  (Pandora)
7. Tutorial: Lessons Learned from Building Real-life Recommender Systems  (Xavier’ tutorial)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值