本文根据神策数据副总裁张涛在神策 2020 数据驱动用户大会上的《从观察到动作,实战数字化运营闭环》的演讲整理而成。(文末附 PPT 下载地址)
也许在大家过去的认知中,神策数据主要做用户行为分析以及业务洞察,但在 2020 年,神策数据方法论进行了一次全面升级——SDAF 框架。
在加入神策之前,我一直在 C 端,在做业务的过程中,我发现在一家企业不管是做产品还是运营,其流程均可以包含在 SDAF 框架中,概括来说均是从发现想法/机会到策划/设计、研发、上线/投放最后进行反馈复盘。
值得强调的是,SDAF 框架中数据驱动是关键影响因子。原步骤中的数据流向是什么样呢?
一般在研发环节定义数据,即需要采集什么数据,然后在上线、投放的过程中用户使用后产生数据,然后在反馈环节分析数据。
在原来的数据流向里,数据驱动往往是从最后的反馈环节,反向驱动整个流程,因为直到最后一步才有数据,该部分的相关人员往往是关注数据的产品经理或者数据分析师,这将引发一个问题,如下图,整个数据驱动从尾部到头部不断减弱,如我在过去公司负责产品时,数据团队提出的一些建议也很难说服产品进行调整。 因此,光看不做的数据驱动,没有任何意义。即使尾部不断输出各种数据报告和洞察,但改变不了前面的决策环节,将毫无作用。
但是,SDAF 框架颠覆了传统模式,数据不是作为一个流,从头流到尾,而是作为一个中心,从 SDAF 四个环节完成了一个闭环,让整个公司及业务的所有角色都能够在闭环中发生作用。 下面我将从观察到动作展开介绍 SDAF 闭环。
Sense:从抽象的数据中形成对业务和用户的洞察
具体来说,感知可以从两个方面理解。
其一,从抽象数据中观察,完成对业务流程的感知,目前神策数据有“互联网 +”行业的客户,如银行、品牌零售等行业,过去他们对线下业务流程,如客户进店的走向,货架摆放设计等熟知,但当把业务从线下搬到线上时,他们对线上流量、用户留存,及商品 SKU 的展现销售情况可能并不清楚,只能看到最终的数据。但结合 SDAF 闭环与神策数据产品可以进行真实业务流程的还原与各环节分析。下面举几个例子:
分组漏斗还原转化流程阻塞节点。比如神策数据的漏斗分析模型可以辅助还原真实业务场景,如下图: 这是一个常见的例子,漏斗从 APP 启动、商品详情、加购物车到结算、生成订单、最后变成一个有效订单。该流程是通用的,但仅看漏斗分析的价值有限,针对此,神策数据采用的一个方式是对漏斗进行分组,比如针对结算到生成订单这一环节,可以针对点了结算、但没有生成订单的人进行分组,如按照订单的金额进行分组,分完组后发现,价格比较高的订单转化顺畅,转化失败的订单均是价格比较低的订单,经过深入分析发现,该企业的包邮金额正好卡在 50 美元限额的地方,是否包邮对订单的转化影响非常大,针对这一现状企业可以进行一些优化,如是否需要补贴运费等,不管最终的决策是什么,企业一旦发现了业务流程中隐藏的真相后,每一步的转化就在掌控之中。
再比如,可以通过归因分析发现订单主要贡献来源。企业的产品首页往往会有各种运营位、活动、文章推荐等,但运营不是堆功能或玩法,到底哪些对最终的成单有促进作用,如果只简单用漏斗分析较难区分,如某些用户会点击所有运营位,