09191006

#include<stdio.h>
#include<string.h>
char str[1000010];
int main()
{
    int t,l,j;
    scanf("%d",&t);
    for(j=1; j<=t; j++)
    {
        scanf("%s",str);
        int flag=0,ffff=0,s=0,l,f0=0,i;
        l=strlen(str);
        if(l==0)
                break;
        for(i=0; i<l; i++)
        {
            if(str[i]=='f')
                ffff++;
           else if(str[i]=='c')
            {
                if(flag==0)
                {
                    f0=ffff;
                    flag=1;
                    ffff=0;
                }
                else
                {
                    if(ffff==0||ffff==1)
                    {
                        s=-1;
                        break;
                    }
                    ffff=0;
                    s++;
                }
            }
            else
            {
                    s=-1;
                    break;
            }
        }
        if(s!=-1)
        {
            ffff=ffff+f0;
            if(flag==1)
            {
                if(ffff==0||ffff==1)
                {
                    s=-1;
                }
                else
                    s++;
            }
            else
            {
                s=ffff/2;
                if(ffff%2==1)
                    s++;
            }
        }
        printf("Case #%d: %d\n",j,s);
    }
    return 0;
}

内容概要:本文档详细介绍了基于MATLAB实现的无人机三维路径规划项目,核心算法采用蒙特卡罗树搜索(MCTS)。项目旨在解决无人机在复杂三维环境中自主路径规划的问题,通过MCTS的随机模拟与渐进式搜索机制,实现高效、智能化的路径规划。项目不仅考虑静态环境建模,还集成了障碍物检测与避障机制,确保无人机飞行的安全性和效率。文档涵盖了从环境准备、数据处理、算法设计与实现、模型训练与预测、性能评估到GUI界面设计的完整流程,并提供了详细的代码示例。此外,项目采用模块化设计,支持多无人机协同路径规划、动态环境实时路径重规划等未来改进方向。 适合人群:具备一定编程基础,特别是熟悉MATLAB和无人机技术的研发人员;从事无人机路径规划、智能导航系统开发的工程师;对MCTS算法感兴趣的算法研究人员。 使用场景及目标:①理解MCTS算法在三维路径规划中的应用;②掌握基于MATLAB的无人机路径规划项目开发全流程;③学习如何通过MCTS算法优化无人机在复杂环境中的飞行路径,提高飞行安全性和效率;④为后续多无人机协同规划、动态环境实时调整等高级应用打下基础。 其他说明:项目不仅提供了详细的理论解释和技术实现,还特别关注了实际应用中的挑战和解决方案。例如,通过多阶段优化与迭代增强机制提升路径质量,结合环境建模与障碍物感知保障路径安全,利用GPU加速推理提升计算效率等。此外,项目还强调了代码模块化与调试便利性,便于后续功能扩展和性能优化。项目未来改进方向包括引入深度强化学习辅助路径规划、扩展至多无人机协同路径规划、增强动态环境实时路径重规划能力等,展示了广阔的应用前景和发展潜力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值