生物信息学与病毒传播模型的研究进展
在生物信息学和病毒传播研究领域,有两项重要的研究成果值得关注。一项是关于最大四重一致性的近似算法,另一项是关于随机正则图上随机游走的病毒传播过程。下面将分别对这两项研究进行详细介绍。
最大四重一致性近似算法
在构建系统发育树的过程中,四重一致性是一个关键问题。通过一系列的数学推导和证明,可以实现以较高概率构建出满足一定比例四重集的树。
- 不等式证明
- 首先需要证明不等式 (2β_2 - 2β_2^2 + 2η(β_0 + β_1) - δ^2/2 > 2β_2 - β_2^2 + 12δ^3 + δ^2/2),等价于证明 (2η(β_0 + β_1) - β_2^2 > δ^2 + 12δ^3)。
- 已知 (η = |D|/n_0) 且 (|D| ≥ n/3),所以 (η ≥ 1/3)。由引理可知 (α_0 + α_1 ≥ 16δ^2),进而 (β_0 + β_1 > 16δ^2)。又因为 (|A_{v,j}| ≤ δn) 且 (X) 由 (A_{v,j}) 和最多 (50δ^2n) 个来自 ((v, j)) 下方集合的额外顶点组成,所以 (α_2 ≤ δ + 50δ^2),即 (β_2 ≤ 3δ + 150δ^2 < 3.1δ)。因此,不等式左边至少为 (2/3 · 16δ^2 - 9.61δ^2 > 1.056δ^2),证明了该不等式。
- 构建接近分区的树
- 当 (α_1^ ≥ 1
超级会员免费看
订阅专栏 解锁全文
83

被折叠的 条评论
为什么被折叠?



