欧拉回路Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 18877 Accepted Submission(s): 7350 Problem Description 欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路。现给定一个图,问是否存在欧拉回路?
Input 测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是节点数N ( 1 < N < 1000 )和边数M;随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个节点的编号(节点从1到N编号)。当N为0时输入结
Output 每个测试用例的输出占一行,若欧拉回路存在则输出1,否则输出0。
Sample Input 3 3 1 2 1 3 2 3 3 2 1 2 2 3 0
Sample Output 1 0
Author ZJU
Source
Recommend We have carefully selected several similar problems for you: 1879 1880 1877 1881 1863
|
分析:
模板题:
1.图联通(并查集)
2.均为偶数度
#include <cstdio>
#include <cstring>
#define N 1000
using namespace std;
int n, m;
int f[N],degree[N];//记录第i点的度数
void init()
{
for (int i = 1; i <= n; i++)
f[i] = i;
}
int find(int x)
{
return x == f[x] ? x : f[x] = find(f[x]);
}
void merge(int x, int y)
{
int t1, t2;
t1 = find(x); t2 = find(y);
if (t1 != t2) f[t2] = t1;
else return;
}
int isEuler()
{
for (int i = 1; i <= n; i++)
if (degree[i] & 1) return 0;
return 1;
}
int isconnect()
{
int cnt = 0;
for (int i = 1; i <= n; i++)
{
if (f[i] == i)
cnt++;
}
if (cnt == 1) return 1;
else return 0;
}
int main()
{
while (scanf("%d", &n) != EOF && n)
{
init();
memset(degree, 0, sizeof(degree));
scanf("%d", &m);
int t1, t2;
for (int i = 0; i < m; i++)
{
scanf("%d%d", &t1, &t2);
//输入有t1,t2相等的情况
if (t1 == t2)
continue;
degree[t1]++; degree[t2]++;
merge(t1, t2);
}
printf("%d\n", isEuler() && isconnect());
}
return 0;
}