数据结构与算法
文章目录
4 递归
-
基本介绍:
递归就是方法自己调用自己,每次调用时传入不同的变量
-
迷宫:
public class MiGong { public static void main(String[] args) { int[][] map = new int[8][7]; for (int i = 0; i < 7; i++) { map[0][i] = 1; map[7][i] = 1; } for (int i = 0; i < 8; i++) { map[i][0] = 1; map[i][6] = 1; } map[3][1] = 1; map[3][2] = 1; // map[1][2] = 1; // map[2][2] = 1; System.out.println("地图"); for (int i = 0; i < 8; i++) { for (int j = 0; j < 7; j++) { System.out.print(map[i][j] + " "); } System.out.println(); } //setWay(map, 1, 1); setWay2(map, 1, 1); System.out.println("路径"); for (int i = 0; i < 8; i++) { for (int j = 0; j < 7; j++) { System.out.print(map[i][j] + " "); } System.out.println(); } } public static boolean setWay(int[][] map, int i, int j) { if (map[6][5] == 2) { return true; } else { if (map[i][j] == 0) { map[i][j] = 2; if (setWay(map, i + 1, j)) { return true; } else if (setWay(map, i, j + 1)) { return true; } else if (setWay(map, i - 1, j)) { return true; } else if (setWay(map, i, j - 1)) { return true; } else { map[i][j] = 3; return false; } } else { return false; } } } public static boolean setWay2(int[][] map, int i, int j) { if (map[6][5] == 2) { return true; } else { if (map[i][j] == 0) { map[i][j] = 2; if (setWay2(map, i - 1, j)) { return true; } else if (setWay2(map, i, j + 1)) { return true; } else if (setWay2(map, i + 1, j)) { return true; } else if (setWay2(map, i, j - 1)) { return true; } else { map[i][j] = 3; return false; } } else { return false; } } } }
-
八皇后:
public class Queue8 { //定义一个max表示共有多少个皇后 int max = 8; //定义数组array, 保存皇后放置位置的结果,比如 arr = {0 , 4, 7, 5, 2, 6, 1, 3} int[] array = new int[max]; static int count = 0; static int judgeCount = 0; public static void main(String[] args) { //测试一把 , 8皇后是否正确 Queue8 queue8 = new Queue8(); queue8.check(0); System.out.printf("一共有%d解法", count); System.out.printf("一共判断冲突的次数%d次", judgeCount); // 1.5w } //编写一个方法,放置第n个皇后 //特别注意: check 是 每一次递归时,进入到check中都有 for(int i = 0; i < max; i++),因此会有回溯 private void check(int n) { if(n == max) { //n = 8 , 其实8个皇后就既然放好 print(); return; } //依次放入皇后,并判断是否冲突 for(int i = 0; i < max; i++) { //先把当前这个皇后 n , 放到该行的第1列 array[n] = i; //判断当放置第n个皇后到i列时,是否冲突 if(judge(n)) { // 不冲突 //接着放n+1个皇后,即开始递归 check(n+1); // } //如果冲突,就继续执行 array[n] = i; 即将第n个皇后,放置在本行得 后移的一个位置 } } //查看当我们放置第n个皇后, 就去检测该皇后是否和前面已经摆放的皇后冲突 /** * * @param n 表示第n个皇后 * @return */ private boolean judge(int n) { judgeCount++; for(int i = 0; i < n; i++) { // 说明 //1. array[i] == array[n] 表示判断 第n个皇后是否和前面的n-1个皇后在同一列 //2. Math.abs(n-i) == Math.abs(array[n] - array[i]) 表示判断第n个皇后是否和第i皇后是否在同一斜线 // n = 1 放置第 2列 1 n = 1 array[1] = 1 // Math.abs(1-0) == 1 Math.abs(array[n] - array[i]) = Math.abs(1-0) = 1 //3. 判断是否在同一行, 没有必要,n 每次都在递增 if(array[i] == array[n] || Math.abs(n-i) == Math.abs(array[n] - array[i]) ) { return false; } } return true; } //写一个方法,可以将皇后摆放的位置输出 private void print() { count++; for (int i = 0; i < array.length; i++) { System.out.print(array[i] + " "); } System.out.println(); } }
5 排序
5.1 冒泡排序
思路:通过对待排序序列从前向后(从下标较小的元素开始),依次比较相邻元素的值,若发现逆序则交换,使值较大的元素逐渐从前移向后部

// 将前面额冒泡排序算法,封装成一个方法
public static void bubbleSort(int[] arr) {
// 冒泡排序 的时间复杂度 O(n^2), 自己写出
int temp = 0; // 临时变量
boolean flag = false; // 标识变量,表示是否进行过交换
for (int i = 0; i < arr.length - 1; i++) {
for (int j = 0; j < arr.length - 1 - i; j++) {
// 如果前面的数比后面的数大,则交换
if (arr[j] > arr[j + 1]) {
flag = true;
temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
//System.out.println("第" + (i + 1) + "趟排序后的数组");
//System.out.println(Arrays.toString(arr));
if (!flag) { // 在一趟排序中,一次交换都没有发生过
break;
} else {
flag = false; // 重置flag!!!, 进行下次判断
}
}
}
5.2 选择排序
思路:
第一次从arr[0]~arr[n-1]中选取最小值,与 arr[0]交换,
第二次从 arr[1]~arr[n-1]中选取最小值,与 arr[1]交换,
第三次从 arr[2]~arr[n-1]中选取最小值,与arr[2]交换,…
第 i 次从 arr[i-1]~arr[n-1]中选取最小值,与 arr[i-1]交换,…,
第 n-1 次从 arr[n-2]~arr[n-1]中选取最小值,与 arr[n-2]交换,总
共通过 n-1 次,得到一个按排序码从小到大排列的有序序列

//选择排序
public static void selectSort(int[] arr) {
//在推导的过程,我们发现了规律,因此,可以使用for来解决
//选择排序时间复杂度是 O(n^2)
for (int i = 0; i < arr.length - 1; i++) {
int minIndex = i;
int min = arr[i];
for (int j = i + 1; j < arr.length; j++) {
if (min > arr[j]) { // 说明假定的最小值,并不是最小
min = arr[j]; // 重置min
minIndex = j; // 重置minIndex
}
}
// 将最小值,放在arr[0], 即交换
if (minIndex != i) {
arr[minIndex] = arr[i];
arr[i] = min;
}
//System.out.println("第"+(i+1)+"轮后~~");
//System.out.println(Arrays.toString(arr));// 1, 34, 119, 101
}
5.3 插入排序
思路:把 n 个待排序的元素看成为一个有序表和一个无序表,开始时有序表中只包含一个元素,无序表中包含有 n-1 个元素,排序过程中每次从无序表中取出第一个元素,把它的排序码依次与有序表元素的排序码进行比较,将它插入到有序表中的适当位置,使之成为新的有序表

//插入排序
public static void insertSort(int[] arr) {
int insertVal = 0;
int insertIndex = 0;
//使用for循环来把代码简化
for(int i = 1; i < arr.length; i++) {
//定义待插入的数
insertVal = arr[i];
insertIndex = i - 1; // 即arr[1]的前面这个数的下标
// 给insertVal 找到插入的位置
// 说明
// 1. insertIndex >= 0 保证在给insertVal 找插入位置,不越界
// 2. insertVal < arr[insertIndex] 待插入的数,还没有找到插入位置
// 3. 就需要将 arr[insertIndex] 后移
while (insertIndex >= 0 && insertVal < arr[insertIndex]) {
arr[insertIndex + 1] = arr[insertIndex];// arr[insertIndex]
insertIndex--;
}
// 当退出while循环时,说明插入的位置找到, insertIndex + 1
// 举例:理解不了,我们一会 debug
//这里我们判断是否需要赋值
if(insertIndex + 1 != i) {
arr[insertIndex + 1] = insertVal;
}
//System.out.println("第"+i+"轮插入");
//System.out.println(Arrays.toString(arr));
}
5.4 希尔排序
思路:希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至 1

// 希尔排序时, 对有序序列在插入时采用交换法,
// 思路(算法) ===> 代码
public static void shellSort(int[] arr) {
int temp = 0;
int count = 0;
// 根据前面的逐步分析,使用循环处理
for (int gap = arr.length / 2; gap > 0; gap /= 2) {
for (int i = gap; i < arr.length; i++) {
// 遍历各组中所有的元素(共gap组,每组有个元素), 步长gap
for (int j = i - gap; j >= 0; j -= gap) {
// 如果当前元素大于加上步长后的那个元素,说明交换
if (arr[j] > arr[j + gap]) {
temp = arr[j];
arr[j] = arr[j + gap];
arr[j + gap] = temp;
}
}
}
//System.out.println("希尔排序第" + (++count) + "轮 =" + Arrays.toString(arr));
}
}
//对交换式的希尔排序进行优化->移位法
public static void shellSort2(int[] arr) {
// 增量gap, 并逐步的缩小增量
for (int gap = arr.length / 2; gap > 0; gap /= 2) {
// 从第gap个元素,逐个对其所在的组进行直接插入排序
for (int i = gap; i < arr.length; i++) {
int j = i;
int temp = arr[j];
if (arr[j] < arr[j - gap]) {
while (j - gap >= 0 && temp < arr[j - gap]) {
//移动
arr[j] = arr[j-gap];
j -= gap;
}
//当退出while后,就给temp找到插入的位置
arr[j] = temp;
}
}
}
}
5.5 快速排序
思路:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列

public static void quickSort(int[] arr,int left, int right) {
int l = left; //左下标
int r = right; //右下标
//pivot 中轴值
int pivot = arr[(left + right) / 2];
int temp = 0; //临时变量,作为交换时使用
//while循环的目的是让比pivot 值小放到左边
//比pivot 值大放到右边
while( l < r) {
//在pivot的左边一直找,找到大于等于pivot值,才退出
while( arr[l] < pivot) {
l += 1;
}
//在pivot的右边一直找,找到小于等于pivot值,才退出
while(arr[r] > pivot) {
r -= 1;
}
//如果l >= r说明pivot 的左右两的值,已经按照左边全部是
//小于等于pivot值,右边全部是大于等于pivot值
if( l >= r) {
break;
}
//交换
temp = arr[l];
arr[l] = arr[r];
arr[r] = temp;
//如果交换完后,发现这个arr[l] == pivot值 相等 r--, 前移
if(arr[l] == pivot) {
r -= 1;
}
//如果交换完后,发现这个arr[r] == pivot值 相等 l++, 后移
if(arr[r] == pivot) {
l += 1;
}
}
// 如果 l == r, 必须l++, r--, 否则为出现栈溢出
if (l == r) {
l += 1;
r -= 1;
}
//向左递归
if(left < r) {
quickSort(arr, left, r);
}
//向右递归
if(right > l) {
quickSort(arr, l, right);
}
}
5.6 归并排序


//分+合方法
public static void mergeSort(int[] arr, int left, int right, int[] temp) {
if(left < right) {
int mid = (left + right) / 2; //中间索引
//向左递归进行分解
mergeSort(arr, left, mid, temp);
//向右递归进行分解
mergeSort(arr, mid + 1, right, temp);
//合并
merge(arr, left, mid, right, temp);
}
}
//合并的方法
/**
*
* @param arr 排序的原始数组
* @param left 左边有序序列的初始索引
* @param mid 中间索引
* @param right 右边索引
* @param temp 做中转的数组
*/
public static void merge(int[] arr, int left, int mid, int right, int[] temp) {
int i = left; // 初始化i, 左边有序序列的初始索引
int j = mid + 1; //初始化j, 右边有序序列的初始索引
int t = 0; // 指向temp数组的当前索引
//(一)
//先把左右两边(有序)的数据按照规则填充到temp数组
//直到左右两边的有序序列,有一边处理完毕为止
while (i <= mid && j <= right) {//继续
//如果左边的有序序列的当前元素,小于等于右边有序序列的当前元素
//即将左边的当前元素,填充到 temp数组
//然后 t++, i++
if(arr[i] <= arr[j]) {
temp[t] = arr[i];
t += 1;
i += 1;
} else { //反之,将右边有序序列的当前元素,填充到temp数组
temp[t] = arr[j];
t += 1;
j += 1;
}
}
//(二)
//把有剩余数据的一边的数据依次全部填充到temp
while( i <= mid) { //左边的有序序列还有剩余的元素,就全部填充到temp
temp[t] = arr[i];
t += 1;
i += 1;
}
while( j <= right) { //右边的有序序列还有剩余的元素,就全部填充到temp
temp[t] = arr[j];
t += 1;
j += 1;
}
//(三)
//将temp数组的元素拷贝到arr
//注意,并不是每次都拷贝所有
t = 0;
int tempLeft = left; //
//第一次合并 tempLeft = 0 , right = 1 // tempLeft = 2 right = 3 // tL=0 ri=3
//最后一次 tempLeft = 0 right = 7
while(tempLeft <= right) {
arr[tempLeft] = temp[t];
t += 1;
tempLeft += 1;
}
}
5.7 基数排序


public static void radixSort(int[] arr) {
//根据前面的推导过程,我们可以得到最终的基数排序代码
//1. 得到数组中最大的数的位数
int max = arr[0]; //假设第一数就是最大数
for(int i = 1; i < arr.length; i++) {
if (arr[i] > max) {
max = arr[i];
}
}
//得到最大数是几位数
int maxLength = (max + "").length();
//定义一个二维数组,表示10个桶, 每个桶就是一个一维数组
//说明
//1. 二维数组包含10个一维数组
//2. 为了防止在放入数的时候,数据溢出,则每个一维数组(桶),大小定为arr.length
//3. 名明确,基数排序是使用空间换时间的经典算法
int[][] bucket = new int[10][arr.length];
//为了记录每个桶中,实际存放了多少个数据,我们定义一个一维数组来记录各个桶的每次放入的数据个数
//可以这里理解
//比如:bucketElementCounts[0] , 记录的就是 bucket[0] 桶的放入数据个数
int[] bucketElementCounts = new int[10];
//这里我们使用循环将代码处理
for(int i = 0 , n = 1; i < maxLength; i++, n *= 10) {
//(针对每个元素的对应位进行排序处理), 第一次是个位,第二次是十位,第三次是百位..
for(int j = 0; j < arr.length; j++) {
//取出每个元素的对应位的值
int digitOfElement = arr[j] / n % 10;
//放入到对应的桶中
bucket[digitOfElement][bucketElementCounts[digitOfElement]] = arr[j];
bucketElementCounts[digitOfElement]++;
}
//按照这个桶的顺序(一维数组的下标依次取出数据,放入原来数组)
int index = 0;
//遍历每一桶,并将桶中是数据,放入到原数组
for(int k = 0; k < bucketElementCounts.length; k++) {
//如果桶中,有数据,我们才放入到原数组
if(bucketElementCounts[k] != 0) {
//循环该桶即第k个桶(即第k个一维数组), 放入
for(int l = 0; l < bucketElementCounts[k]; l++) {
//取出元素放入到arr
arr[index++] = bucket[k][l];
}
}
//第i+1轮处理后,需要将每个 bucketElementCounts[k] = 0 !!!!
bucketElementCounts[k] = 0;
}
//System.out.println("第"+(i+1)+"轮,对个位的排序处理 arr =" + Arrays.toString(arr));
}
5.8 堆排序

public class HeapSort {
public static void main(String[] args) {
//要求将数组进行升序排序
//int arr[] = {4, 6, 8, 5, 9};
// 创建要给80000个的随机的数组
int[] arr = new int[8000000];
for (int i = 0; i < 8000000; i++) {
arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
}
System.out.println("排序前");
Date data1 = new Date();
SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
String date1Str = simpleDateFormat.format(data1);
System.out.println("排序前的时间是=" + date1Str);
heapSort(arr);
Date data2 = new Date();
String date2Str = simpleDateFormat.format(data2);
System.out.println("排序前的时间是=" + date2Str);
//System.out.println("排序后=" + Arrays.toString(arr));
}
//编写一个堆排序的方法
public static void heapSort(int arr[]) {
int temp = 0;
System.out.println("堆排序!!");
// //分步完成
// adjustHeap(arr, 1, arr.length);
// System.out.println("第一次" + Arrays.toString(arr)); // 4, 9, 8, 5, 6
//
// adjustHeap(arr, 0, arr.length);
// System.out.println("第2次" + Arrays.toString(arr)); // 9,6,8,5,4
//完成我们最终代码
//将无序序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆
for(int i = arr.length / 2 -1; i >=0; i--) {
adjustHeap(arr, i, arr.length);
}
/*
* 2).将堆顶元素与末尾元素交换,将最大元素"沉"到数组末端;
3).重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序。
*/
for(int j = arr.length-1;j >0; j--) {
//交换
temp = arr[j];
arr[j] = arr[0];
arr[0] = temp;
adjustHeap(arr, 0, j);
}
//System.out.println("数组=" + Arrays.toString(arr));
}
//将一个数组(二叉树), 调整成一个大顶堆
/**
* 功能: 完成 将 以 i 对应的非叶子结点的树调整成大顶堆
* 举例 int arr[] = {4, 6, 8, 5, 9}; => i = 1 => adjustHeap => 得到 {4, 9, 8, 5, 6}
* 如果我们再次调用 adjustHeap 传入的是 i = 0 => 得到 {4, 9, 8, 5, 6} => {9,6,8,5, 4}
* @param arr 待调整的数组
* @param i 表示非叶子结点在数组中索引
* @param lenght 表示对多少个元素继续调整, length 是在逐渐的减少
*/
public static void adjustHeap(int arr[], int i, int lenght) {
int temp = arr[i];//先取出当前元素的值,保存在临时变量
//开始调整
//说明
//1. k = i * 2 + 1 k 是 i结点的左子结点
for(int k = i * 2 + 1; k < lenght; k = k * 2 + 1) {
if(k+1 < lenght && arr[k] < arr[k+1]) { //说明左子结点的值小于右子结点的值
k++; // k 指向右子结点
}
if(arr[k] > temp) { //如果子结点大于父结点
arr[i] = arr[k]; //把较大的值赋给当前结点
i = k; //!!! i 指向 k,继续循环比较
} else {
break;//!
}
}
//当for 循环结束后,我们已经将以i 为父结点的树的最大值,放在了 最顶(局部)
arr[i] = temp;//将temp值放到调整后的位置
}
}
6 查找
6.1 二分查找

public static int binarySearch(int[] arr, int left, int right, int findVal) {
// 当 left > right 时,说明递归整个数组,但是没有找到
if (left > right) {
return -1;
}
int mid = (left + right) / 2;
int midVal = arr[mid];
if (findVal > midVal) { // 向 右递归
return binarySearch(arr, mid + 1, right, findVal);
} else if (findVal < midVal) { // 向左递归
return binarySearch(arr, left, mid - 1, findVal);
} else {
return mid;
}
}
//完成一个课后思考题:
/*
* 课后思考题: {1,8, 10, 89, 1000, 1000,1234} 当一个有序数组中,
* 有多个相同的数值时,如何将所有的数值都查找到,比如这里的 1000
*
* 思路分析
* 1. 在找到mid 索引值,不要马上返回
* 2. 向mid 索引值的左边扫描,将所有满足 1000, 的元素的下标,加入到集合ArrayList
* 3. 向mid 索引值的右边扫描,将所有满足 1000, 的元素的下标,加入到集合ArrayList
* 4. 将Arraylist返回
*/
public static List<Integer> binarySearch2(int[] arr, int left, int right, int findVal) {
System.out.println("hello~");
// 当 left > right 时,说明递归整个数组,但是没有找到
if (left > right) {
return new ArrayList<Integer>();
}
int mid = (left + right) / 2;
int midVal = arr[mid];
if (findVal > midVal) { // 向 右递归
return binarySearch2(arr, mid + 1, right, findVal);
} else if (findVal < midVal) { // 向左递归
return binarySearch2(arr, left, mid - 1, findVal);
} else {
// * 思路分析
// * 1. 在找到mid 索引值,不要马上返回
// * 2. 向mid 索引值的左边扫描,将所有满足 1000, 的元素的下标,加入到集合ArrayList
// * 3. 向mid 索引值的右边扫描,将所有满足 1000, 的元素的下标,加入到集合ArrayList
// * 4. 将Arraylist返回
List<Integer> resIndexlist = new ArrayList<Integer>();
//向mid 索引值的左边扫描,将所有满足 1000, 的元素的下标,加入到集合ArrayList
int temp = mid - 1;
while(true) {
if (temp < 0 || arr[temp] != findVal) {//退出
break;
}
//否则,就temp 放入到 resIndexlist
resIndexlist.add(temp);
temp -= 1; //temp左移
}
resIndexlist.add(mid); //
//向mid 索引值的右边扫描,将所有满足 1000, 的元素的下标,加入到集合ArrayList
temp = mid + 1;
while(true) {
if (temp > arr.length - 1 || arr[temp] != findVal) {//退出
break;
}
//否则,就temp 放入到 resIndexlist
resIndexlist.add(temp);
temp += 1; //temp右移
}
return resIndexlist;
}
}
6.2 插值查找

public static int insertValueSearch(int[] arr, int left, int right, int findVal) {
System.out.println("插值查找次数~~");
//注意:findVal < arr[0] 和 findVal > arr[arr.length - 1] 必须需要
//否则我们得到的 mid 可能越界
if (left > right || findVal < arr[0] || findVal > arr[arr.length - 1]) {
return -1;
}
// 求出mid, 自适应
int mid = left + (right - left) * (findVal - arr[left]) / (arr[right] - arr[left]);
int midVal = arr[mid];
if (findVal > midVal) { // 说明应该向右边递归
return insertValueSearch(arr, mid + 1, right, findVal);
} else if (findVal < midVal) { // 说明向左递归查找
return insertValueSearch(arr, left, mid - 1, findVal);
} else {
return mid;
}
}
6.3 斐波那契查找

//因为后面我们mid=low+F(k-1)-1,需要使用到斐波那契数列,因此我们需要先获取到一个斐波那契数列
//非递归方法得到一个斐波那契数列
public static int[] fib() {
int[] f = new int[maxSize];
f[0] = 1;
f[1] = 1;
for (int i = 2; i < maxSize; i++) {
f[i] = f[i - 1] + f[i - 2];
}
return f;
}
//编写斐波那契查找算法
//使用非递归的方式编写算法
/**
*
* @param a 数组
* @param key 我们需要查找的关键码(值)
* @return 返回对应的下标,如果没有-1
*/
public static int fibSearch(int[] a, int key) {
int low = 0;
int high = a.length - 1;
int k = 0; //表示斐波那契分割数值的下标
int mid = 0; //存放mid值
int f[] = fib(); //获取到斐波那契数列
//获取到斐波那契分割数值的下标
while(high > f[k] - 1) {
k++;
}
//因为 f[k] 值 可能大于 a 的 长度,因此我们需要使用Arrays类,构造一个新的数组,并指向temp[]
//不足的部分会使用0填充
int[] temp = Arrays.copyOf(a, f[k]);
//实际上需求使用a数组最后的数填充 temp
//举例:
//temp = {1,8, 10, 89, 1000, 1234, 0, 0} => {1,8, 10, 89, 1000, 1234, 1234, 1234,}
for(int i = high + 1; i < temp.length; i++) {
temp[i] = a[high];
}
// 使用while来循环处理,找到我们的数 key
while (low <= high) { // 只要这个条件满足,就可以找
mid = low + f[k - 1] - 1;
if(key < temp[mid]) { //我们应该继续向数组的前面查找(左边)
high = mid - 1;
//为甚是 k--
//说明
//1. 全部元素 = 前面的元素 + 后边元素
//2. f[k] = f[k-1] + f[k-2]
//因为 前面有 f[k-1]个元素,所以可以继续拆分 f[k-1] = f[k-2] + f[k-3]
//即 在 f[k-1] 的前面继续查找 k--
//即下次循环 mid = f[k-1-1]-1
k--;
} else if ( key > temp[mid]) { // 我们应该继续向数组的后面查找(右边)
low = mid + 1;
//为什么是k -=2
//说明
//1. 全部元素 = 前面的元素 + 后边元素
//2. f[k] = f[k-1] + f[k-2]
//3. 因为后面我们有f[k-2] 所以可以继续拆分 f[k-1] = f[k-3] + f[k-4]
//4. 即在f[k-2] 的前面进行查找 k -=2
//5. 即下次循环 mid = f[k - 1 - 2] - 1
k -= 2;
} else { //找到
//需要确定,返回的是哪个下标
if(mid <= high) {
return mid;
} else {
return high;
}
}
}
return -1;
}
7 哈希表
-
基本介绍:
散列表(Hash table,也叫哈希表),是根据关键码值(Key value)而直接进行访问的数据结构。也就是说,它通过把关键码值映射到表中一个位置来访问记录,以加快查找的速度。这个映射函数叫做散列函数,存放记录的数组叫做散列表
-
google上机题:
public class HashTabDemo { public static void main(String[] args) { //创建哈希表 HashTab hashTab = new HashTab(7); //写一个简单的菜单 String key = ""; Scanner scanner = new Scanner(System.in); while (true) { System.out.println("add: 添加雇员"); System.out.println("list: 显示雇员"); System.out.println("find: 查找雇员"); System.out.println("exit: 退出系统"); key = scanner.next(); switch (key) { case "add": System.out.println("输入id"); int id = scanner.nextInt(); System.out.println("输入名字"); String name = scanner.next(); //创建 雇员 Emp emp = new Emp(id, name); hashTab.add(emp); break; case "list": hashTab.list(); break; case "find": System.out.println("请输入要查找的id"); id = scanner.nextInt(); hashTab.findEmpById(id); break; case "exit": scanner.close(); System.exit(0); default: break; } } } } //创建HashTab 管理多条链表 class HashTab { private EmpLinkedList[] empLinkedListArray; private int size; //表示有多少条链表 //构造器 public HashTab(int size) { this.size = size; //初始化empLinkedListArray empLinkedListArray = new EmpLinkedList[size]; //?留一个坑, 这时不要分别初始化每个链表 for (int i = 0; i < size; i++) { empLinkedListArray[i] = new EmpLinkedList(); } } //添加雇员 public void add(Emp emp) { //根据员工的id ,得到该员工应当添加到哪条链表 int empLinkedListNO = hashFun(emp.id); //将emp 添加到对应的链表中 empLinkedListArray[empLinkedListNO].add(emp); } //遍历所有的链表,遍历hashtab public void list() { for (int i = 0; i < size; i++) { empLinkedListArray[i].list(i); } } //根据输入的id,查找雇员 public void findEmpById(int id) { //使用散列函数确定到哪条链表查找 int empLinkedListNO = hashFun(id); Emp emp = empLinkedListArray[empLinkedListNO].findEmpById(id); if (emp != null) {//找到 System.out.printf("在第%d条链表中找到 雇员 id = %d\n", (empLinkedListNO + 1), id); } else { System.out.println("在哈希表中,没有找到该雇员~"); } } //编写散列函数, 使用一个简单取模法 public int hashFun(int id) { return id % size; } } //表示一个雇员 class Emp { public int id; public String name; public Emp next; //next 默认为 null public Emp(int id, String name) { super(); this.id = id; this.name = name; } } //创建EmpLinkedList ,表示链表 class EmpLinkedList { //头指针,执行第一个Emp,因此我们这个链表的head 是直接指向第一个Emp private Emp head; //默认null //添加雇员到链表 //说明 //1. 假定,当添加雇员时,id 是自增长,即id的分配总是从小到大 // 因此我们将该雇员直接加入到本链表的最后即可 public void add(Emp emp) { //如果是添加第一个雇员 if (head == null) { head = emp; return; } //如果不是第一个雇员,则使用一个辅助的指针,帮助定位到最后 Emp curEmp = head; while (true) { if (curEmp.next == null) {//说明到链表最后 break; } curEmp = curEmp.next; //后移 } //退出时直接将emp 加入链表 curEmp.next = emp; } //遍历链表的雇员信息 public void list(int no) { if (head == null) { //说明链表为空 System.out.println("第 " + (no + 1) + " 链表为空"); return; } System.out.print("第 " + (no + 1) + " 链表的信息为"); Emp curEmp = head; //辅助指针 while (true) { System.out.printf(" => id=%d name=%s\t", curEmp.id, curEmp.name); if (curEmp.next == null) {//说明curEmp已经是最后结点 break; } curEmp = curEmp.next; //后移,遍历 } System.out.println(); } //根据id查找雇员 //如果查找到,就返回Emp, 如果没有找到,就返回null public Emp findEmpById(int id) { //判断链表是否为空 if (head == null) { System.out.println("链表为空"); return null; } //辅助指针 Emp curEmp = head; while (true) { if (curEmp.id == id) {//找到 break;//这时curEmp就指向要查找的雇员 } //退出 if (curEmp.next == null) {//说明遍历当前链表没有找到该雇员 curEmp = null; break; } curEmp = curEmp.next;//以后 } return curEmp; } }