数据结构与算法
8 树(基础)
8.1 二叉树
-
基础介绍:
- 树有很多种,每个节点最多只能有两个子节点的一种形式称为二叉树。
- 二叉树的子节点分为左节点和右节点
- 如果该二叉树的所有叶子节点都在最后一层,并且结点总数= 2^n -1 , n 为层数,则我们称为满二叉树
- 如果该二叉树的所有叶子节点都在最后一层或者倒数第二层,而且最后一层的叶子节点在左边连续,倒数第二层的叶子节点在右边连续,我们称为完全二叉树
-
遍历:
-
前序遍历: 先输出父节点,再遍历左子树和右子树
-
中序遍历: 先遍历左子树,再输出父节点,再遍历右子树
-
后序遍历: 先遍历左子树,再遍历右子树,最后输出父节点
public class BinaryTreeDemo { public static void main(String[] args) { //先需要创建一颗二叉树 BinaryTree binaryTree = new BinaryTree(); //创建需要的结点 HeroNode root = new HeroNode(1, "宋江"); HeroNode node2 = new HeroNode(2, "吴用"); HeroNode node3 = new HeroNode(3, "卢俊义"); HeroNode node4 = new HeroNode(4, "林冲"); HeroNode node5 = new HeroNode(5, "关胜"); //说明,我们先手动创建该二叉树,后面我们学习递归的方式创建二叉树 root.setLeft(node2); root.setRight(node3); node3.setRight(node4); node3.setLeft(node5); binaryTree.setRoot(root); //测试 // System.out.println("前序遍历"); // 1,2,3,5,4 // binaryTree.preOrder(); //测试 // System.out.println("中序遍历"); // binaryTree.infixOrder(); // 2,1,5,3,4 // // System.out.println("后序遍历"); // binaryTree.postOrder(); // 2,5,4,3,1 //前序遍历 //前序遍历的次数 :4 // System.out.println("前序遍历方式~~~"); // HeroNode resNode = binaryTree.preOrderSearch(5); // if (resNode != null) { // System.out.printf("找到了,信息为 no=%d name=%s", resNode.getNo(), resNode.getName()); // } else { // System.out.printf("没有找到 no = %d 的英雄", 5); // } //中序遍历查找 //中序遍历3次 // System.out.println("中序遍历方式~~~"); // HeroNode resNode = binaryTree.infixOrderSearch(5); // if (resNode != null) { // System.out.printf("找到了,信息为 no=%d name=%s", resNode.getNo(), resNode.getName()); // } else { // System.out.printf("没有找到 no = %d 的英雄", 5); // } //后序遍历查找 //后序遍历查找的次数 2次 // System.out.println("后序遍历方式~~~"); // HeroNode resNode = binaryTree.postOrderSearch(5); // if (resNode != null) { // System.out.printf("找到了,信息为 no=%d name=%s", resNode.getNo(), resNode.getName()); // } else { // System.out.printf("没有找到 no = %d 的英雄", 5); // } //测试一把删除结点 System.out.println("删除前,前序遍历"); binaryTree.preOrder(); // 1,2,3,5,4 binaryTree.delNode(5); //binaryTree.delNode(3); System.out.println("删除后,前序遍历"); binaryTree.preOrder(); // 1,2,3,4 } } //定义BinaryTree 二叉树 class BinaryTree { private HeroNode root; public void setRoot(HeroNode root) { this.root = root; } //删除结点 public void delNode(int no) { if (root != null) { //如果只有一个root结点, 这里立即判断root是不是就是要删除结点 if (root.getNo() == no) { root = null; } else { //递归删除 root.delNode(no); } } else { System.out.println("空树,不能删除~"); } } //前序遍历 public void preOrder() { if (this.root != null) { this.root.preOrder(); } else { System.out.println("二叉树为空,无法遍历"); } } //中序遍历 public void infixOrder() { if (this.root != null) { this.root.infixOrder(); } else { System.out.println("二叉树为空,无法遍历"); } } //后序遍历 public void postOrder() { if (this.root != null) { this.root.postOrder(); } else { System.out.println("二叉树为空,无法遍历"); } } //前序遍历 public HeroNode preOrderSearch(int no) { if (root != null) { return root.preOrderSearch(no); } else { return null; } } //中序遍历 public HeroNode infixOrderSearch(int no) { if (root != null) { return root.infixOrderSearch(no); } else { return null; } } //后序遍历 public HeroNode postOrderSearch(int no) { if (root != null) { return this.root.postOrderSearch(no); } else { return null; } } } //先创建HeroNode 结点 class HeroNode { private int no; private String name; private HeroNode left; //默认null private HeroNode right; //默认null public HeroNode(int no, String name) { this.no = no; this.name = name; } public int getNo() { return no; } public void setNo(int no) { this.no = no; } public String getName() { return name; } public void setName(String name) { this.name = name; } public HeroNode getLeft() { return left; } public void setLeft(HeroNode left) { this.left = left; } public HeroNode getRight() { return right; } public void setRight(HeroNode right) { this.right = right; } @Override public String toString() { return "HeroNode [no=" + no + ", name=" + name + "]"; } //递归删除结点 //1.如果删除的节点是叶子节点,则删除该节点 //2.如果删除的节点是非叶子节点,则删除该子树 public void delNode(int no) { //思路 /* * 1. 因为我们的二叉树是单向的,所以我们是判断当前结点的子结点是否需要删除结点,而不能去判断当前这个结点是不是需要删除结点. 2. 如果当前结点的左子结点不为空,并且左子结点 就是要删除结点,就将this.left = null; 并且就返回(结束递归删除) 3. 如果当前结点的右子结点不为空,并且右子结点 就是要删除结点,就将this.right= null ;并且就返回(结束递归删除) 4. 如果第2和第3步没有删除结点,那么我们就需要向左子树进行递归删除 5. 如果第4步也没有删除结点,则应当向右子树进行递归删除. */ //2. 如果当前结点的左子结点不为空,并且左子结点 就是要删除结点,就将this.left = null; 并且就返回(结束递归删除) if (this.left != null && this.left.no == no) { this.left = null; return; } //3.如果当前结点的右子结点不为空,并且右子结点 就是要删除结点,就将this.right= null ;并且就返回(结束递归删除) if (this.right != null && this.right.no == no) { this.right = null; return; } //4.我们就需要向左子树进行递归删除 if (this.left != null) { this.left.delNode(no); } //5.则应当向右子树进行递归删除 if (this.right != null) { this.right.delNode(no); } } //编写前序遍历的方法 public void preOrder() { System.out.println(this); //先输出父结点 //递归向左子树前序遍历 if (this.left != null) { this.left.preOrder(); } //递归向右子树前序遍历 if (this.right != null) { this.right.preOrder(); } } //中序遍历 public void infixOrder() { //递归向左子树中序遍历 if (this.left != null) { this.left.infixOrder(); } //输出父结点 System.out.println(this); //递归向右子树中序遍历 if (this.right != null) { this.right.infixOrder(); } } //后序遍历 public void postOrder() { if (this.left != null) { this.left.postOrder(); } if (this.right != null) { this.right.postOrder(); } System.out.println(this); } //前序遍历查找 /** * @param no 查找no * @return 如果找到就返回该Node ,如果没有找到返回 null */ public HeroNode preOrderSearch(int no) { System.out.println("进入前序遍历"); //比较当前结点是不是 if (this.no == no) { return this; } //1.则判断当前结点的左子节点是否为空,如果不为空,则递归前序查找 //2.如果左递归前序查找,找到结点,则返回 HeroNode resNode = null; if (this.left != null) { resNode = this.left.preOrderSearch(no); } if (resNode != null) {//说明我们左子树找到 return resNode; } //1.左递归前序查找,找到结点,则返回,否继续判断, //2.当前的结点的右子节点是否为空,如果不空,则继续向右递归前序查找 if (this.right != null) { resNode = this.right.preOrderSearch(no); } return resNode; } //中序遍历查找 public HeroNode infixOrderSearch(int no) { //判断当前结点的左子节点是否为空,如果不为空,则递归中序查找 HeroNode resNode = null; if (this.left != null) { resNode = this.left.infixOrderSearch(no); } if (resNode != null) { return resNode; } System.out.println("进入中序查找"); //如果找到,则返回,如果没有找到,就和当前结点比较,如果是则返回当前结点 if (this.no == no) { return this; } //否则继续进行右递归的中序查找 if (this.right != null) { resNode = this.right.infixOrderSearch(no); } return resNode; } //后序遍历查找 public HeroNode postOrderSearch(int no) { //判断当前结点的左子节点是否为空,如果不为空,则递归后序查找 HeroNode resNode = null; if (this.left != null) { resNode = this.left.postOrderSearch(no); } if (resNode != null) {//说明在左子树找到 return resNode; } //如果左子树没有找到,则向右子树递归进行后序遍历查找 if (this.right != null) { resNode = this.right.postOrderSearch(no); } if (resNode != null) { return resNode; } System.out.println("进入后序查找"); //如果左右子树都没有找到,就比较当前结点是不是 if (this.no == no) { return this; } return resNode; } }
-
8.2 顺序存储二叉树:
- 顺序二叉树通常只考虑完全二叉树
- 第 n 个元素的左子节点为 2 * n + 1
- 第 n 个元素的右子节点为 2 * n + 2
- 第 n 个元素的父节点为 (n-1) / 2
- n : 表示二叉树中的第几个元素(按

public class ArrBinaryTreeDemo {
public static void main(String[] args) {
int[] arr = {1, 2, 3, 4, 5, 6, 7};
//创建一个 ArrBinaryTree
ArrBinaryTree arrBinaryTree = new ArrBinaryTree(arr);
arrBinaryTree.preOrder(); // 1,2,4,5,3,6,7
}
}
//编写一个ArrayBinaryTree, 实现顺序存储二叉树遍历
class ArrBinaryTree {
private int[] arr;//存储数据结点的数组
public ArrBinaryTree(int[] arr) {
this.arr = arr;
}
//重载preOrder
public void preOrder() {
this.preOrder(0);
}
//编写一个方法,完成顺序存储二叉树的前序遍历
/**
* @param index 数组的下标
*/
public void preOrder(int index) {
//如果数组为空,或者 arr.length = 0
if (arr == null || arr.length == 0) {
System.out.println("数组为空,不能按照二叉树的前序遍历");
}
//输出当前这个元素
System.out.println(arr[index]);
//向左递归遍历
if ((index * 2 + 1) < arr.length) {
preOrder(2 * index + 1);
}
//向右递归遍历
if ((index * 2 + 2) < arr.length) {
preOrder(2 * index + 2);
}
}
}
8.3 线索化二叉树:
-
n 个结点的二叉链表中含有 n+1 【公式 2n-(n-1)=n+1】 个空指针域。利用二叉链表中的空指针域,存放指向该结点在某种遍历次序下的前驱和后继结点的指针(这种附加的指针称为"线索")
-
这种加上了线索的二叉链表称为线索链表,相应的二叉树称为线索二叉树(Threaded BinaryTree)。根据线索性质的不同,线索二叉树可分为前序线索二叉树、中序线索二叉树和后序线索二叉树三种
-
一个结点的前一个结点,称为前驱结点
-
一个结点的后一个结点,称为后继结点
package com.atguigu.tree.threadedbinarytree; import java.util.concurrent.SynchronousQueue; public class ThreadedBinaryTreeDemo { public static void main(String[] args) { //测试一把中序线索二叉树的功能 HeroNode root = new HeroNode(1, "tom"); HeroNode node2 = new HeroNode(3, "jack"); HeroNode node3 = new HeroNode(6, "smith"); HeroNode node4 = new HeroNode(8, "mary"); HeroNode node5 = new HeroNode(10, "king"); HeroNode node6 = new HeroNode(14, "dim"); //二叉树,后面我们要递归创建, 现在简单处理使用手动创建 root.setLeft(node2); root.setRight(node3); node2.setLeft(node4); node2.setRight(node5); node3.setLeft(node6); //测试中序线索化 ThreadedBinaryTree threadedBinaryTree = new ThreadedBinaryTree(); threadedBinaryTree.setRoot(root); threadedBinaryTree.threadedNodes(); //测试: 以10号节点测试 HeroNode leftNode = node5.getLeft(); HeroNode rightNode = node5.getRight(); System.out.println("10号结点的前驱结点是 =" + leftNode); //3 System.out.println("10号结点的后继结点是=" + rightNode); //1 //当线索化二叉树后,能在使用原来的遍历方法 //threadedBinaryTree.infixOrder(); System.out.println("使用线索化的方式遍历 线索化二叉树"); threadedBinaryTree.threadedList(); // 8, 3, 10, 1, 14, 6 } } //定义ThreadedBinaryTree 实现了线索化功能的二叉树 class ThreadedBinaryTree { private HeroNode root; //为了实现线索化,需要创建要给指向当前结点的前驱结点的指针 //在递归进行线索化时,pre 总是保留前一个结点 private HeroNode pre = null; public void setRoot(HeroNode root) { this.root = root; } //重载一把threadedNodes方法 public void threadedNodes() { this.threadedNodes(root); } //遍历线索化二叉树的方法 public void threadedList() { //定义一个变量,存储当前遍历的结点,从root开始 HeroNode node = root; while (node != null) { //循环的找到leftType == 1的结点,第一个找到就是8结点 //后面随着遍历而变化,因为当leftType==1时,说明该结点是按照线索化 //处理后的有效结点 while (node.getLeftType() == 0) { node = node.getLeft(); } //打印当前这个结点 System.out.println(node); //如果当前结点的右指针指向的是后继结点,就一直输出 while (node.getRightType() == 1) { //获取到当前结点的后继结点 node = node.getRight(); System.out.println(node); } //替换这个遍历的结点 node = node.getRight(); } } //编写对二叉树进行中序线索化的方法 /** * @param node 就是当前需要线索化的结点 */ public void threadedNodes(HeroNode node) { //如果node==null, 不能线索化 if (node == null) { return; } //(一)先线索化左子树 threadedNodes(node.getLeft()); //(二)线索化当前结点[有难度] //处理当前结点的前驱结点 //以8结点来理解 //8结点的.left = null , 8结点的.leftType = 1 if (node.getLeft() == null) { //让当前结点的左指针指向前驱结点 node.setLeft(pre); //修改当前结点的左指针的类型,指向前驱结点 node.setLeftType(1); } //处理后继结点 if (pre != null && pre.getRight() == null) { //让前驱结点的右指针指向当前结点 pre.setRight(node); //修改前驱结点的右指针类型 pre.setRightType(1); } //!!! 每处理一个结点后,让当前结点是下一个结点的前驱结点 pre = node; //(三)在线索化右子树 threadedNodes(node.getRight()); } //删除结点 public void delNode(int no) { if (root != null) { //如果只有一个root结点, 这里立即判断root是不是就是要删除结点 if (root.getNo() == no) { root = null; } else { //递归删除 root.delNode(no); } } else { System.out.println("空树,不能删除~"); } } //前序遍历 public void preOrder() { if (this.root != null) { this.root.preOrder(); } else { System.out.println("二叉树为空,无法遍历"); } } //中序遍历 public void infixOrder() { if (this.root != null) { this.root.infixOrder(); } else { System.out.println("二叉树为空,无法遍历"); } } //后序遍历 public void postOrder() { if (this.root != null) { this.root.postOrder(); } else { System.out.println("二叉树为空,无法遍历"); } } //前序遍历 public HeroNode preOrderSearch(int no) { if (root != null) { return root.preOrderSearch(no); } else { return null; } } //中序遍历 public HeroNode infixOrderSearch(int no) { if (root != null) { return root.infixOrderSearch(no); } else { return null; } } //后序遍历 public HeroNode postOrderSearch(int no) { if (root != null) { return this.root.postOrderSearch(no); } else { return null; } } } //先创建HeroNode 结点 class HeroNode { private int no; private String name; private HeroNode left; //默认null private HeroNode right; //默认null //说明 //1. 如果leftType == 0 表示指向的是左子树, 如果 1 则表示指向前驱结点 //2. 如果rightType == 0 表示指向是右子树, 如果 1表示指向后继结点 private int leftType; private int rightType; public int getLeftType() { return leftType; } public void setLeftType(int leftType) { this.leftType = leftType; } public int getRightType() { return rightType; } public void setRightType(int rightType) { this.rightType = rightType; } public HeroNode(int no, String name) { this.no = no; this.name = name; } public int getNo() { return no; } public void setNo(int no) { this.no = no; } public String getName() { return name; } public void setName(String name) { this.name = name; } public HeroNode getLeft() { return left; } public void setLeft(HeroNode left) { this.left = left; } public HeroNode getRight() { return right; } public void setRight(HeroNode right) { this.right = right; } @Override public String toString() { return "HeroNode [no=" + no + ", name=" + name + "]"; } //递归删除结点 //1.如果删除的节点是叶子节点,则删除该节点 //2.如果删除的节点是非叶子节点,则删除该子树 public void delNode(int no) { //思路 /* * 1. 因为我们的二叉树是单向的,所以我们是判断当前结点的子结点是否需要删除结点,而不能去判断当前这个结点是不是需要删除结点. 2. 如果当前结点的左子结点不为空,并且左子结点 就是要删除结点,就将this.left = null; 并且就返回(结束递归删除) 3. 如果当前结点的右子结点不为空,并且右子结点 就是要删除结点,就将this.right= null ;并且就返回(结束递归删除) 4. 如果第2和第3步没有删除结点,那么我们就需要向左子树进行递归删除 5. 如果第4步也没有删除结点,则应当向右子树进行递归删除. */ //2. 如果当前结点的左子结点不为空,并且左子结点 就是要删除结点,就将this.left = null; 并且就返回(结束递归删除) if (this.left != null && this.left.no == no) { this.left = null; return; } //3.如果当前结点的右子结点不为空,并且右子结点 就是要删除结点,就将this.right= null ;并且就返回(结束递归删除) if (this.right != null && this.right.no == no) { this.right = null; return; } //4.我们就需要向左子树进行递归删除 if (this.left != null) { this.left.delNode(no); } //5.则应当向右子树进行递归删除 if (this.right != null) { this.right.delNode(no); } } //编写前序遍历的方法 public void preOrder() { System.out.println(this); //先输出父结点 //递归向左子树前序遍历 if (this.left != null) { this.left.preOrder(); } //递归向右子树前序遍历 if (this.right != null) { this.right.preOrder(); } } //中序遍历 public void infixOrder() { //递归向左子树中序遍历 if (this.left != null) { this.left.infixOrder(); } //输出父结点 System.out.println(this); //递归向右子树中序遍历 if (this.right != null) { this.right.infixOrder(); } } //后序遍历 public void postOrder() { if (this.left != null) { this.left.postOrder(); } if (this.right != null) { this.right.postOrder(); } System.out.println(this); } //前序遍历查找 /** * @param no 查找no * @return 如果找到就返回该Node ,如果没有找到返回 null */ public HeroNode preOrderSearch(int no) { System.out.println("进入前序遍历"); //比较当前结点是不是 if (this.no == no) { return this; } //1.则判断当前结点的左子节点是否为空,如果不为空,则递归前序查找 //2.如果左递归前序查找,找到结点,则返回 HeroNode resNode = null; if (this.left != null) { resNode = this.left.preOrderSearch(no); } if (resNode != null) {//说明我们左子树找到 return resNode; } //1.左递归前序查找,找到结点,则返回,否继续判断, //2.当前的结点的右子节点是否为空,如果不空,则继续向右递归前序查找 if (this.right != null) { resNode = this.right.preOrderSearch(no); } return resNode; } //中序遍历查找 public HeroNode infixOrderSearch(int no) { //判断当前结点的左子节点是否为空,如果不为空,则递归中序查找 HeroNode resNode = null; if (this.left != null) { resNode = this.left.infixOrderSearch(no); } if (resNode != null) { return resNode; } System.out.println("进入中序查找"); //如果找到,则返回,如果没有找到,就和当前结点比较,如果是则返回当前结点 if (this.no == no) { return this; } //否则继续进行右递归的中序查找 if (this.right != null) { resNode = this.right.infixOrderSearch(no); } return resNode; } //后序遍历查找 public HeroNode postOrderSearch(int no) { //判断当前结点的左子节点是否为空,如果不为空,则递归后序查找 HeroNode resNode = null; if (this.left != null) { resNode = this.left.postOrderSearch(no); } if (resNode != null) {//说明在左子树找到 return resNode; } //如果左子树没有找到,则向右子树递归进行后序遍历查找 if (this.right != null) { resNode = this.right.postOrderSearch(no); } if (resNode != null) { return resNode; } System.out.println("进入后序查找"); //如果左右子树都没有找到,就比较当前结点是不是 if (this.no == no) { return this; } return resNode; } }
9 树(应用)
9.1 赫夫曼树
-
基本介绍:
- 给定 n 个权值作为 n 个叶子结点,构造一棵二叉树,若该树的带权路径长度(wpl)达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree), 还有的书翻译为霍夫曼树。
- 赫夫曼树是带权路径长度最短的树,权值较大的结点离根较近
-
构成步骤:
-
从小到大进行排序, 将每一个数据,每个数据都是一个节点 , 每个节点可以看成是一颗最简单的二叉树
-
取出根节点权值最小的两颗二叉树
-
组成一颗新的二叉树, 该新的二叉树的根节点的权值是前面两颗二叉树根节点权值的和
-
再将这颗新的二叉树,以根节点的权值大小 再次排序, 不断重复 1-2-3-4 的步骤,直到数列中,所有的数据都被处理,就得到一颗赫夫曼树
public class HuffmanTree { public static void main(String[] args) { int arr[] = {13, 7, 8, 3, 29, 6, 1}; Node root = createHuffmanTree(arr); //测试一把 preOrder(root); // } //编写一个前序遍历的方法 public static void preOrder(Node root) { if (root != null) { root.preOrder(); } else { System.out.println("是空树,不能遍历~~"); } } // 创建赫夫曼树的方法 /** * @param arr 需要创建成哈夫曼树的数组 * @return 创建好后的赫夫曼树的root结点 */ public static Node createHuffmanTree(int[] arr) { // 第一步为了操作方便 // 1. 遍历 arr 数组 // 2. 将arr的每个元素构成成一个Node // 3. 将Node 放入到ArrayList中 List<Node> nodes = new ArrayList<Node>(); for (int value : arr) { nodes.add(new Node(value)); } //我们处理的过程是一个循环的过程 while (nodes.size() > 1) { //排序 从小到大 Collections.sort(nodes); System.out.println("nodes =" + nodes); //取出根节点权值最小的两颗二叉树 //(1) 取出权值最小的结点(二叉树) Node leftNode = nodes.get(0); //(2) 取出权值第二小的结点(二叉树) Node rightNode = nodes.get(1); //(3)构建一颗新的二叉树 Node parent = new Node(leftNode.value + rightNode.value); parent.left = leftNode; parent.right = rightNode; //(4)从ArrayList删除处理过的二叉树 nodes.remove(leftNode); nodes.remove(rightNode); //(5)将parent加入到nodes nodes.add(parent); } //返回哈夫曼树的root结点 return nodes.get(0); } } // 创建结点类 // 为了让Node 对象持续排序Collections集合排序 // 让Node 实现Comparable接口 class Node implements Comparable<Node> { int value; // 结点权值 char c; //字符 Node left; // 指向左子结点 Node right; // 指向右子结点 //写一个前序遍历 public void preOrder() { System.out.println(this); if (this.left != null) { this.left.preOrder(); } if (this.right != null) { this.right.preOrder(); } } public Node(int value) { this.value = value; } @Override public String toString() { return "Node [value=" + value + "]"; } @Override public int compareTo(Node o) { // TODO Auto-generated method stub // 表示从小到大排序 return this.value - o.value; } }
-
9.2 赫夫曼编码
-
基本介绍:
-
构成步骤:
-
从小到大进行排序, 将每一个数据,每个数据都是一个节点 , 每个节点可以看成是一颗最简单的二叉树
-
取出根节点权值最小的两颗二叉树
-
组成一颗新的二叉树, 该新的二叉树的根节点的权值是前面两颗二叉树根节点权值的和
-
再将这颗新的二叉树,以根节点的权值大小 再次排序, 不断重复 1-2-3-4 的步骤,直到数列中,所有的数据都被处理,就得到一颗赫夫曼树
public class HuffmanCode { public static void main(String[] args) { //测试压缩文件 // String srcFile = "d://Uninstall.xml"; // String dstFile = "d://Uninstall.zip"; // // zipFile(srcFile, dstFile); // System.out.println("压缩文件ok~~"); //测试解压文件 String zipFile = "d://Uninstall.zip"; String dstFile = "d://Uninstall2.xml"; unZipFile(zipFile, dstFile); System.out.println("解压成功!"); /* String content = "i like like like java do you like a java"; byte[] contentBytes = content.getBytes(); System.out.println(contentBytes.length); //40 byte[] huffmanCodesBytes= huffmanZip(contentBytes); System.out.println("压缩后的结果是:" + Arrays.toString(huffmanCodesBytes) + " 长度= " + huffmanCodesBytes.length); //测试一把byteToBitString方法 //System.out.println(byteToBitString((byte)1)); byte[] sourceBytes = decode(huffmanCodes, huffmanCodesBytes); System.out.println("原来的字符串=" + new String(sourceBytes)); // "i like like like java do you like a java" */ //如何将 数据进行解压(解码) //分步过程 /* List<Node> nodes = getNodes(contentBytes); System.out.println("nodes=" + nodes); //测试一把,创建的赫夫曼树 System.out.println("赫夫曼树"); Node huffmanTreeRoot = createHuffmanTree(nodes); System.out.println("前序遍历"); huffmanTreeRoot.preOrder(); //测试一把是否生成了对应的赫夫曼编码 Map<Byte, String> huffmanCodes = getCodes(huffmanTreeRoot); System.out.println("~生成的赫夫曼编码表= " + huffmanCodes); //测试 byte[] huffmanCodeBytes = zip(contentBytes, huffmanCodes); System.out.println("huffmanCodeBytes=" + Arrays.toString(huffmanCodeBytes));//17 //发送huffmanCodeBytes 数组 */ } //编写一个方法,完成对压缩文件的解压 /** * * @param zipFile 准备解压的文件 * @param dstFile 将文件解压到哪个路径 */ public static void unZipFile(String zipFile, String dstFile) { //定义文件输入流 InputStream is = null; //定义一个对象输入流 ObjectInputStream ois = null; //定义文件的输出流 OutputStream os = null; try { //创建文件输入流 is = new FileInputStream(zipFile); //创建一个和 is关联的对象输入流 ois = new ObjectInputStream(is); //读取byte数组 huffmanBytes byte[] huffmanBytes = (byte[])ois.readObject(); //读取赫夫曼编码表 Map<Byte,String> huffmanCodes = (Map<Byte,String>)ois.readObject(); //解码 byte[] bytes = decode(huffmanCodes, huffmanBytes); //将bytes 数组写入到目标文件 os = new FileOutputStream(dstFile); //写数据到 dstFile 文件 os.write(bytes); } catch (Exception e) { // TODO: handle exception System.out.println(e.getMessage()); } finally { try { os.close(); ois.close(); is.close(); } catch (Exception e2) { // TODO: handle exception System.out.println(e2.getMessage()); } } } //编写方法,将一个文件进行压缩 /** * * @param srcFile 你传入的希望压缩的文件的全路径 * @param dstFile 我们压缩后将压缩文件放到哪个目录 */ public static void zipFile(String srcFile, String dstFile) { //创建输出流 OutputStream os = null; ObjectOutputStream oos = null; //创建文件的输入流 FileInputStream is = null; try { //创建文件的输入流 is = new FileInputStream(srcFile); //创建一个和源文件大小一样的byte[] byte[] b = new byte[is.available()]; //读取文件 is.read(b); //直接对源文件压缩 byte[] huffmanBytes = huffmanZip(b); //创建文件的输出流, 存放压缩文件 os = new FileOutputStream(dstFile); //创建一个和文件输出流关联的ObjectOutputStream oos = new ObjectOutputStream(os); //把 赫夫曼编码后的字节数组写入压缩文件 oos.writeObject(huffmanBytes); //我们是把 //这里我们以对象流的方式写入 赫夫曼编码,是为了以后我们恢复源文件时使用 //注意一定要把赫夫曼编码 写入压缩文件 oos.writeObject(huffmanCodes); }catch (Exception e) { // TODO: handle exception System.out.println(e.getMessage()); }finally { try { is.close(); oos.close(); os.close(); }catch (Exception e) { // TODO: handle exception System.out.println(e.getMessage()); } } } //完成数据的解压 //思路 //1. 将huffmanCodeBytes [-88, -65, -56, -65, -56, -65, -55, 77, -57, 6, -24, -14, -117, -4, -60, -90, 28] // 重写先转成 赫夫曼编码对应的二进制的字符串 "1010100010111..." //2. 赫夫曼编码对应的二进制的字符串 "1010100010111..." =》 对照 赫夫曼编码 =》 "i like like like java do you like a java" //编写一个方法,完成对压缩数据的解码 /** * * @param huffmanCodes 赫夫曼编码表 map * @param huffmanBytes 赫夫曼编码得到的字节数组 * @return 就是原来的字符串对应的数组 */ private static byte[] decode(Map<Byte,String> huffmanCodes, byte[] huffmanBytes) { //1. 先得到 huffmanBytes 对应的 二进制的字符串 , 形式 1010100010111... StringBuilder stringBuilder = new StringBuilder(); //将byte数组转成二进制的字符串 for(int i = 0; i < huffmanBytes.length; i++) { byte b = huffmanBytes[i]; //判断是不是最后一个字节 boolean flag = (i == huffmanBytes.length - 1); stringBuilder.append(byteToBitString(!flag, b)); } //把字符串安装指定的赫夫曼编码进行解码 //把赫夫曼编码表进行调换,因为反向查询 a->100 100->a Map<String, Byte> map = new HashMap<String,Byte>(); for(Map.Entry<Byte, String> entry: huffmanCodes.entrySet()) { map.put(entry.getValue(), entry.getKey()); } //创建要给集合,存放byte List<Byte> list = new ArrayList<>(); //i 可以理解成就是索引,扫描 stringBuilder for(int i = 0; i < stringBuilder.length(); ) { int count = 1; // 小的计数器 boolean flag = true; Byte b = null; while(flag) { //1010100010111... //递增的取出 key 1 String key = stringBuilder.substring(i, i+count);//i 不动,让count移动,指定匹配到一个字符 b = map.get(key); if(b == null) {//说明没有匹配到 count++; }else { //匹配到 flag = false; } } list.add(b); i += count;//i 直接移动到 count } //当for循环结束后,我们list中就存放了所有的字符 "i like like like java do you like a java" //把list 中的数据放入到byte[] 并返回 byte b[] = new byte[list.size()]; for(int i = 0;i < b.length; i++) { b[i] = list.get(i); } return b; } /** * 将一个byte 转成一个二进制的字符串, 如果看不懂,可以参考我讲的Java基础 二进制的原码,反码,补码 * @param b 传入的 byte * @param flag 标志是否需要补高位如果是true ,表示需要补高位,如果是false表示不补, 如果是最后一个字节,无需补高位 * @return 是该b 对应的二进制的字符串,(注意是按补码返回) */ private static String byteToBitString(boolean flag, byte b) { //使用变量保存 b int temp = b; //将 b 转成 int //如果是正数我们还存在补高位 if(flag) { temp |= 256; //按位与 256 1 0000 0000 | 0000 0001 => 1 0000 0001 } String str = Integer.toBinaryString(temp); //返回的是temp对应的二进制的补码 if(flag) { return str.substring(str.length() - 8); } else { return str; } } //使用一个方法,将前面的方法封装起来,便于我们的调用. /** * * @param bytes 原始的字符串对应的字节数组 * @return 是经过 赫夫曼编码处理后的字节数组(压缩后的数组) */ private static byte[] huffmanZip(byte[] bytes) { List<Node> nodes = getNodes(bytes); //根据 nodes 创建的赫夫曼树 Node huffmanTreeRoot = createHuffmanTree(nodes); //对应的赫夫曼编码(根据 赫夫曼树) Map<Byte, String> huffmanCodes = getCodes(huffmanTreeRoot); //根据生成的赫夫曼编码,压缩得到压缩后的赫夫曼编码字节数组 byte[] huffmanCodeBytes = zip(bytes, huffmanCodes); return huffmanCodeBytes; } //编写一个方法,将字符串对应的byte[] 数组,通过生成的赫夫曼编码表,返回一个赫夫曼编码 压缩后的byte[] /** * * @param bytes 这时原始的字符串对应的 byte[] * @param huffmanCodes 生成的赫夫曼编码map * @return 返回赫夫曼编码处理后的 byte[] * 举例: String content = "i like like like java do you like a java"; =》 byte[] contentBytes = content.getBytes(); * 返回的是 字符串 "1010100010111111110010001011111111001000101111111100100101001101110001110000011011101000111100101000101111111100110001001010011011100" * => 对应的 byte[] huffmanCodeBytes ,即 8位对应一个 byte,放入到 huffmanCodeBytes * huffmanCodeBytes[0] = 10101000(补码) => byte [推导 10101000=> 10101000 - 1 => 10100111(反码)=> 11011000= -88 ] * huffmanCodeBytes[1] = -88 */ private static byte[] zip(byte[] bytes, Map<Byte, String> huffmanCodes) { //1.利用 huffmanCodes 将 bytes 转成 赫夫曼编码对应的字符串 StringBuilder stringBuilder = new StringBuilder(); //遍历bytes 数组 for(byte b: bytes) { stringBuilder.append(huffmanCodes.get(b)); } //System.out.println("测试 stringBuilder~~~=" + stringBuilder.toString()); //将 "1010100010111111110..." 转成 byte[] //统计返回 byte[] huffmanCodeBytes 长度 //一句话 int len = (stringBuilder.length() + 7) / 8; int len; if(stringBuilder.length() % 8 == 0) { len = stringBuilder.length() / 8; } else { len = stringBuilder.length() / 8 + 1; } //创建 存储压缩后的 byte数组 byte[] huffmanCodeBytes = new byte[len]; int index = 0;//记录是第几个byte for (int i = 0; i < stringBuilder.length(); i += 8) { //因为是每8位对应一个byte,所以步长 +8 String strByte; if(i+8 > stringBuilder.length()) {//不够8位 strByte = stringBuilder.substring(i); }else{ strByte = stringBuilder.substring(i, i + 8); } //将strByte 转成一个byte,放入到 huffmanCodeBytes huffmanCodeBytes[index] = (byte)Integer.parseInt(strByte, 2); index++; } return huffmanCodeBytes; } //生成赫夫曼树对应的赫夫曼编码 //思路: //1. 将赫夫曼编码表存放在 Map<Byte,String> 形式 // 生成的赫夫曼编码表{32=01, 97=100, 100=11000, 117=11001, 101=1110, 118=11011, 105=101, 121=11010, 106=0010, 107=1111, 108=000, 111=0011} static Map<Byte, String> huffmanCodes = new HashMap<Byte,String>(); //2. 在生成赫夫曼编码表示,需要去拼接路径, 定义一个StringBuilder 存储某个叶子结点的路径 static StringBuilder stringBuilder = new StringBuilder(); //为了调用方便,我们重载 getCodes private static Map<Byte, String> getCodes(Node root) { if(root == null) { return null; } //处理root的左子树 getCodes(root.left, "0", stringBuilder); //处理root的右子树 getCodes(root.right, "1", stringBuilder); return huffmanCodes; } /** * 功能:将传入的node结点的所有叶子结点的赫夫曼编码得到,并放入到huffmanCodes集合 * @param node 传入结点 * @param code 路径: 左子结点是 0, 右子结点 1 * @param stringBuilder 用于拼接路径 */ private static void getCodes(Node node, String code, StringBuilder stringBuilder) { StringBuilder stringBuilder2 = new StringBuilder(stringBuilder); //将code 加入到 stringBuilder2 stringBuilder2.append(code); if(node != null) { //如果node == null不处理 //判断当前node 是叶子结点还是非叶子结点 if(node.data == null) { //非叶子结点 //递归处理 //向左递归 getCodes(node.left, "0", stringBuilder2); //向右递归 getCodes(node.right, "1", stringBuilder2); } else { //说明是一个叶子结点 //就表示找到某个叶子结点的最后 huffmanCodes.put(node.data, stringBuilder2.toString()); } } } //前序遍历的方法 private static void preOrder(Node root) { if(root != null) { root.preOrder(); }else { System.out.println("赫夫曼树为空"); } } /** * * @param bytes 接收字节数组 * @return 返回的就是 List 形式 [Node[date=97 ,weight = 5], Node[]date=32,weight = 9]......], */ private static List<Node> getNodes(byte[] bytes) { //1创建一个ArrayList ArrayList<Node> nodes = new ArrayList<Node>(); //遍历 bytes , 统计 每一个byte出现的次数->map[key,value] Map<Byte, Integer> counts = new HashMap<>(); for (byte b : bytes) { Integer count = counts.get(b); if (count == null) { // Map还没有这个字符数据,第一次 counts.put(b, 1); } else { counts.put(b, count + 1); } } //把每一个键值对转成一个Node 对象,并加入到nodes集合 //遍历map for(Map.Entry<Byte, Integer> entry: counts.entrySet()) { nodes.add(new Node(entry.getKey(), entry.getValue())); } return nodes; } //可以通过List 创建对应的赫夫曼树 private static Node createHuffmanTree(List<Node> nodes) { while(nodes.size() > 1) { //排序, 从小到大 Collections.sort(nodes); //取出第一颗最小的二叉树 Node leftNode = nodes.get(0); //取出第二颗最小的二叉树 Node rightNode = nodes.get(1); //创建一颗新的二叉树,它的根节点 没有data, 只有权值 Node parent = new Node(null, leftNode.weight + rightNode.weight); parent.left = leftNode; parent.right = rightNode; //将已经处理的两颗二叉树从nodes删除 nodes.remove(leftNode); nodes.remove(rightNode); //将新的二叉树,加入到nodes nodes.add(parent); } //nodes 最后的结点,就是赫夫曼树的根结点 return nodes.get(0); } } //创建Node ,待数据和权值 class Node implements Comparable<Node> { Byte data; // 存放数据(字符)本身,比如'a' => 97 ' ' => 32 int weight; //权值, 表示字符出现的次数 Node left;// Node right; public Node(Byte data, int weight) { this.data = data; this.weight = weight; } @Override public int compareTo(Node o) { // 从小到大排序 return this.weight - o.weight; } public String toString() { return "Node [data = " + data + " weight=" + weight + "]"; } //前序遍历 public void preOrder() { System.out.println(this); if(this.left != null) { this.left.preOrder(); } if(this.right != null) { this.right.preOrder(); } } }
-
9.3 平衡二叉树
-
基本介绍:
- 平衡二叉树也叫平衡二叉搜索树(Self-balancing binary search tree)又被称为 AVL 树,可以保证查询效率较高
- 具有以下特点:它是一 棵空树或它的左右两个子树的高度差的绝对值不超过 1,并且左右两个子树都是一棵平衡二叉树。平衡二叉树的常用实现方法有红黑树、AVL、替罪羊树、Treap、伸展树等
-
代码实现:
public class AVLTreeDemo { public static void main(String[] args) { //int[] arr = {4,3,6,5,7,8}; //int[] arr = { 10, 12, 8, 9, 7, 6 }; int[] arr = { 10, 11, 7, 6, 8, 9 }; //创建一个 AVLTree对象 AVLTree avlTree = new AVLTree(); //添加结点 for(int i=0; i < arr.length; i++) { avlTree.add(new Node(arr[i])); } //遍历 System.out.println("中序遍历"); avlTree.infixOrder(); System.out.println("在平衡处理~~"); System.out.println("树的高度=" + avlTree.getRoot().height()); //3 System.out.println("树的左子树高度=" + avlTree.getRoot().leftHeight()); // 2 System.out.println("树的右子树高度=" + avlTree.getRoot().rightHeight()); // 2 System.out.println("当前的根结点=" + avlTree.getRoot());//8 } } // 创建AVLTree class AVLTree { private Node root; public Node getRoot() { return root; } // 查找要删除的结点 public Node search(int value) { if (root == null) { return null; } else { return root.search(value); } } // 查找父结点 public Node searchParent(int value) { if (root == null) { return null; } else { return root.searchParent(value); } } // 编写方法: // 1. 返回的 以node 为根结点的二叉排序树的最小结点的值 // 2. 删除node 为根结点的二叉排序树的最小结点 /** * * @param node * 传入的结点(当做二叉排序树的根结点) * @return 返回的 以node 为根结点的二叉排序树的最小结点的值 */ public int delRightTreeMin(Node node) { Node target = node; // 循环的查找左子节点,就会找到最小值 while (target.left != null) { target = target.left; } // 这时 target就指向了最小结点 // 删除最小结点 delNode(target.value); return target.value; } // 删除结点 public void delNode(int value) { if (root == null) { return; } else { // 1.需求先去找到要删除的结点 targetNode Node targetNode = search(value); // 如果没有找到要删除的结点 if (targetNode == null) { return; } // 如果我们发现当前这颗二叉排序树只有一个结点 if (root.left == null && root.right == null) { root = null; return; } // 去找到targetNode的父结点 Node parent = searchParent(value); // 如果要删除的结点是叶子结点 if (targetNode.left == null && targetNode.right == null) { // 判断targetNode 是父结点的左子结点,还是右子结点 if (parent.left != null && parent.left.value == value) { // 是左子结点 parent.left = null; } else if (parent.right != null && parent.right.value == value) {// 是由子结点 parent.right = null; } } else if (targetNode.left != null && targetNode.right != null) { // 删除有两颗子树的节点 int minVal = delRightTreeMin(targetNode.right); targetNode.value = minVal; } else { // 删除只有一颗子树的结点 // 如果要删除的结点有左子结点 if (targetNode.left != null) { if (parent != null) { // 如果 targetNode 是 parent 的左子结点 if (parent.left.value == value) { parent.left = targetNode.left; } else { // targetNode 是 parent 的右子结点 parent.right = targetNode.left; } } else { root = targetNode.left; } } else { // 如果要删除的结点有右子结点 if (parent != null) { // 如果 targetNode 是 parent 的左子结点 if (parent.left.value == value) { parent.left = targetNode.right; } else { // 如果 targetNode 是 parent 的右子结点 parent.right = targetNode.right; } } else { root = targetNode.right; } } } } } // 添加结点的方法 public void add(Node node) { if (root == null) { root = node;// 如果root为空则直接让root指向node } else { root.add(node); } } // 中序遍历 public void infixOrder() { if (root != null) { root.infixOrder(); } else { System.out.println("二叉排序树为空,不能遍历"); } } } // 创建Node结点 class Node { int value; Node left; Node right; public Node(int value) { this.value = value; } // 返回左子树的高度 public int leftHeight() { if (left == null) { return 0; } return left.height(); } // 返回右子树的高度 public int rightHeight() { if (right == null) { return 0; } return right.height(); } // 返回 以该结点为根结点的树的高度 public int height() { return Math.max(left == null ? 0 : left.height(), right == null ? 0 : right.height()) + 1; } //左旋转方法 private void leftRotate() { //创建新的结点,以当前根结点的值 Node newNode = new Node(value); //把新的结点的左子树设置成当前结点的左子树 newNode.left = left; //把新的结点的右子树设置成带你过去结点的右子树的左子树 newNode.right = right.left; //把当前结点的值替换成右子结点的值 value = right.value; //把当前结点的右子树设置成当前结点右子树的右子树 right = right.right; //把当前结点的左子树(左子结点)设置成新的结点 left = newNode; } //右旋转 private void rightRotate() { Node newNode = new Node(value); newNode.right = right; newNode.left = left.right; value = left.value; left = left.left; right = newNode; } // 查找要删除的结点 /** * * @param value * 希望删除的结点的值 * @return 如果找到返回该结点,否则返回null */ public Node search(int value) { if (value == this.value) { // 找到就是该结点 return this; } else if (value < this.value) {// 如果查找的值小于当前结点,向左子树递归查找 // 如果左子结点为空 if (this.left == null) { return null; } return this.left.search(value); } else { // 如果查找的值不小于当前结点,向右子树递归查找 if (this.right == null) { return null; } return this.right.search(value); } } // 查找要删除结点的父结点 /** * * @param value * 要找到的结点的值 * @return 返回的是要删除的结点的父结点,如果没有就返回null */ public Node searchParent(int value) { // 如果当前结点就是要删除的结点的父结点,就返回 if ((this.left != null && this.left.value == value) || (this.right != null && this.right.value == value)) { return this; } else { // 如果查找的值小于当前结点的值, 并且当前结点的左子结点不为空 if (value < this.value && this.left != null) { return this.left.searchParent(value); // 向左子树递归查找 } else if (value >= this.value && this.right != null) { return this.right.searchParent(value); // 向右子树递归查找 } else { return null; // 没有找到父结点 } } } @Override public String toString() { return "Node [value=" + value + "]"; } // 添加结点的方法 // 递归的形式添加结点,注意需要满足二叉排序树的要求 public void add(Node node) { if (node == null) { return; } // 判断传入的结点的值,和当前子树的根结点的值关系 if (node.value < this.value) { // 如果当前结点左子结点为null if (this.left == null) { this.left = node; } else { // 递归的向左子树添加 this.left.add(node); } } else { // 添加的结点的值大于 当前结点的值 if (this.right == null) { this.right = node; } else { // 递归的向右子树添加 this.right.add(node); } } //当添加完一个结点后,如果: (右子树的高度-左子树的高度) > 1 , 左旋转 if(rightHeight() - leftHeight() > 1) { //如果它的右子树的左子树的高度大于它的右子树的右子树的高度 if(right != null && right.leftHeight() > right.rightHeight()) { //先对右子结点进行右旋转 right.rightRotate(); //然后在对当前结点进行左旋转 leftRotate(); //左旋转.. } else { //直接进行左旋转即可 leftRotate(); } return ; //必须要!!! } //当添加完一个结点后,如果 (左子树的高度 - 右子树的高度) > 1, 右旋转 if(leftHeight() - rightHeight() > 1) { //如果它的左子树的右子树高度大于它的左子树的高度 if(left != null && left.rightHeight() > left.leftHeight()) { //先对当前结点的左结点(左子树)->左旋转 left.leftRotate(); //再对当前结点进行右旋转 rightRotate(); } else { //直接进行右旋转即可 rightRotate(); } } } // 中序遍历 public void infixOrder() { if (this.left != null) { this.left.infixOrder(); } System.out.println(this); if (this.right != null) { this.right.infixOrder(); } } }
9.4 多路查找树
-
B树:
- B 树通过重新组织节点, 降低了树的高度
- 文件系统及数据库系统的设计者利用了磁盘预读原理,将一个节点的大小设为等于一个页(页得大小通常为4k),这样每个节点只需要一次 I/O 就可以完全载入
- 将树的度 M 设置为 1024,在 600 亿个元素中最多只需要 4 次 I/O 操作就可以读取到想要的元素, B树(B+)广泛应用于文件存储系统以及数据库系统中
-
2-3树:
- 2-3 树的所有叶子节点都在同一层.(只要是 B 树都满足这个条件)
- 有两个子节点的节点叫二节点,二节点要么没有子节点,要么有两个子节点
- 有三个子节点的节点叫三节点,三节点要么没有子节点,要么有三个子节点
- 2-3 树是由二节点和三节点构成的树
-
2-3树插入规则:
- 2-3 树的所有叶子节点都在同一层.(只要是 B 树都满足这个条件)
- 有两个子节点的节点叫二节点,二节点要么没有子节点,要么有两个子节点. 3) 有三个子节点的节点叫三节点,三节点要么没有子节点,要么有三个子节点
- 当按照规则插入一个数到某个节点时,不能满足上面三个要求,就需要拆,先向上拆,如果上层满,则拆本层,拆后仍然需要满足上面 3 个条件
- 对于三节点的子树的值大小仍然遵守(BST二叉树排序)规则
-
B树特点:
-
B 树的阶:节点的最多子节点个数
-
B-树的搜索,从根结点开始,对结点内的关键字(有序)序列进行二分查找,如果命中则结束,否则进入查询关键字所属范围的儿子结点;重复,直到所对应的儿子指针为空,或已经是叶子结点
-
关键字集合分布在整颗树中, 即叶子节点和非叶子节点都存放数据
-
搜索有可能在非叶子结点结束
-
其搜索性能等价于在关键字全集内做一次二分查找
-
-
B+树:
-
B+树的搜索与 B 树也基本相同,区别是 B+树只有达到叶子结点才命中(B 树可以在非叶子结点命中),其性能也等价于在关键字全集做一次二分查找
-
所有关键字都出现在叶子结点的链表中(即数据只能在叶子节点【也叫稠密索引】),且链表中的关键字(数据)恰好是有序的
-
不可能在非叶子结点命中
-
非叶子结点相当于是叶子结点的索引(稀疏索引),叶子结点相当于是存储(关键字)数据的数据层
-
-
B*树:
-
B*树定义了非叶子结点关键字个数至少为(2/3)*M,即块的最低使用率为 2/3,而B+树的块的最低使用率为的1/2
-
从第 1 个特点我们可以看出,B*树分配新结点的概率比 B+
-
10 图
public class Graph {
private ArrayList<String> vertexList; //存储顶点集合
private int[][] edges; //存储图对应的邻结矩阵
private int numOfEdges; //表示边的数目
//定义给数组boolean[], 记录某个结点是否被访问
private boolean[] isVisited;
public static void main(String[] args) {
//测试一把图是否创建ok
int n = 8; //结点的个数
//String Vertexs[] = {"A", "B", "C", "D", "E"};
String Vertexs[] = {"1", "2", "3", "4", "5", "6", "7", "8"};
//创建图对象
Graph graph = new Graph(n);
//循环的添加顶点
for (String vertex : Vertexs) {
graph.insertVertex(vertex);
}
//添加边
//A-B A-C B-C B-D B-E
// graph.insertEdge(0, 1, 1); // A-B
// graph.insertEdge(0, 2, 1); //
// graph.insertEdge(1, 2, 1); //
// graph.insertEdge(1, 3, 1); //
// graph.insertEdge(1, 4, 1); //
//更新边的关系
graph.insertEdge(0, 1, 1);
graph.insertEdge(0, 2, 1);
graph.insertEdge(1, 3, 1);
graph.insertEdge(1, 4, 1);
graph.insertEdge(3, 7, 1);
graph.insertEdge(4, 7, 1);
graph.insertEdge(2, 5, 1);
graph.insertEdge(2, 6, 1);
graph.insertEdge(5, 6, 1);
//显示一把邻结矩阵
graph.showGraph();
//测试一把,我们的dfs遍历是否ok
System.out.println("深度遍历");
graph.dfs(); // A->B->C->D->E [1->2->4->8->5->3->6->7]
// System.out.println();
System.out.println("广度优先!");
graph.bfs(); // A->B->C->D-E [1->2->3->4->5->6->7->8]
}
//构造器
public Graph(int n) {
//初始化矩阵和vertexList
edges = new int[n][n];
vertexList = new ArrayList<String>(n);
numOfEdges = 0;
}
//得到第一个邻接结点的下标 w
/**
* @param index
* @return 如果存在就返回对应的下标,否则返回-1
*/
public int getFirstNeighbor(int index) {
for (int j = 0; j < vertexList.size(); j++) {
if (edges[index][j] > 0) {
return j;
}
}
return -1;
}
//根据前一个邻接结点的下标来获取下一个邻接结点
public int getNextNeighbor(int v1, int v2) {
for (int j = v2 + 1; j < vertexList.size(); j++) {
if (edges[v1][j] > 0) {
return j;
}
}
return -1;
}
//深度优先遍历算法
//i 第一次就是 0
private void dfs(boolean[] isVisited, int i) {
//首先我们访问该结点,输出
System.out.print(getValueByIndex(i) + "->");
//将结点设置为已经访问
isVisited[i] = true;
//查找结点i的第一个邻接结点w
int w = getFirstNeighbor(i);
while (w != -1) {//说明有
if (!isVisited[w]) {
dfs(isVisited, w);
}
//如果w结点已经被访问过
w = getNextNeighbor(i, w);
}
}
//对dfs 进行一个重载, 遍历我们所有的结点,并进行 dfs
public void dfs() {
isVisited = new boolean[vertexList.size()];
//遍历所有的结点,进行dfs[回溯]
for (int i = 0; i < getNumOfVertex(); i++) {
if (!isVisited[i]) {
dfs(isVisited, i);
}
}
}
//对一个结点进行广度优先遍历的方法
private void bfs(boolean[] isVisited, int i) {
int u; // 表示队列的头结点对应下标
int w; // 邻接结点w
//队列,记录结点访问的顺序
LinkedList queue = new LinkedList();
//访问结点,输出结点信息
System.out.print(getValueByIndex(i) + "=>");
//标记为已访问
isVisited[i] = true;
//将结点加入队列
queue.addLast(i);
while (!queue.isEmpty()) {
//取出队列的头结点下标
u = (Integer) queue.removeFirst();
//得到第一个邻接结点的下标 w
w = getFirstNeighbor(u);
while (w != -1) {//找到
//是否访问过
if (!isVisited[w]) {
System.out.print(getValueByIndex(w) + "=>");
//标记已经访问
isVisited[w] = true;
//入队
queue.addLast(w);
}
//以u为前驱点,找w后面的下一个邻结点
w = getNextNeighbor(u, w); //体现出我们的广度优先
}
}
}
//遍历所有的结点,都进行广度优先搜索
public void bfs() {
isVisited = new boolean[vertexList.size()];
for (int i = 0; i < getNumOfVertex(); i++) {
if (!isVisited[i]) {
bfs(isVisited, i);
}
}
}
//图中常用的方法
//返回结点的个数
public int getNumOfVertex() {
return vertexList.size();
}
//显示图对应的矩阵
public void showGraph() {
for (int[] link : edges) {
System.err.println(Arrays.toString(link));
}
}
//得到边的数目
public int getNumOfEdges() {
return numOfEdges;
}
//返回结点i(下标)对应的数据 0->"A" 1->"B" 2->"C"
public String getValueByIndex(int i) {
return vertexList.get(i);
}
//返回v1和v2的权值
public int getWeight(int v1, int v2) {
return edges[v1][v2];
}
//插入结点
public void insertVertex(String vertex) {
vertexList.add(vertex);
}
//添加边
/**
* @param v1 表示点的下标即使第几个顶点 "A"-"B" "A"->0 "B"->1
* @param v2 第二个顶点对应的下标
* @param weight 表示
*/
public void insertEdge(int v1, int v2, int weight) {
edges[v1][v2] = weight;
edges[v2][v1] = weight;
numOfEdges++;
}
}
10.1 深度优先

//深度优先遍历算法
//i 第一次就是 0
private void dfs(boolean[] isVisited, int i) {
//首先我们访问该结点,输出
System.out.print(getValueByIndex(i) + "->");
//将结点设置为已经访问
isVisited[i] = true;
//查找结点i的第一个邻接结点w
int w = getFirstNeighbor(i);
while (w != -1) {//说明有
if (!isVisited[w]) {
dfs(isVisited, w);
}
//如果w结点已经被访问过
w = getNextNeighbor(i, w);
}
}
//对dfs 进行一个重载, 遍历我们所有的结点,并进行 dfs
public void dfs() {
isVisited = new boolean[vertexList.size()];
//遍历所有的结点,进行dfs[回溯]
for (int i = 0; i < getNumOfVertex(); i++) {
if (!isVisited[i]) {
dfs(isVisited, i);
}
}
}
10.2 广度优先

//对一个结点进行广度优先遍历的方法
private void bfs(boolean[] isVisited, int i) {
int u; // 表示队列的头结点对应下标
int w; // 邻接结点w
//队列,记录结点访问的顺序
LinkedList queue = new LinkedList();
//访问结点,输出结点信息
System.out.print(getValueByIndex(i) + "=>");
//标记为已访问
isVisited[i] = true;
//将结点加入队列
queue.addLast(i);
while (!queue.isEmpty()) {
//取出队列的头结点下标
u = (Integer) queue.removeFirst();
//得到第一个邻接结点的下标 w
w = getFirstNeighbor(u);
while (w != -1) {//找到
//是否访问过
if (!isVisited[w]) {
System.out.print(getValueByIndex(w) + "=>");
//标记已经访问
isVisited[w] = true;
//入队
queue.addLast(w);
}
//以u为前驱点,找w后面的下一个邻结点
w = getNextNeighbor(u, w); //体现出我们的广度优先
}
}
}
//遍历所有的结点,都进行广度优先搜索
public void bfs() {
isVisited = new boolean[vertexList.size()];
for (int i = 0; i < getNumOfVertex(); i++) {
if (!isVisited[i]) {
bfs(isVisited, i);
}
}
}
11 常用算法
11.1 二分查找(非递归)
-
代码:
public class BinarySearchNoRecur { public static void main(String[] args) { //测试 int[] arr = {1, 3, 8, 10, 11, 67, 100}; int index = binarySearch(arr, 100); System.out.println("index=" + index);// } //二分查找的非递归实现 /** * @param arr 待查找的数组, arr是升序排序 * @param target 需要查找的数 * @return 返回对应下标,-1表示没有找到 */ public static int binarySearch(int[] arr, int target) { int left = 0; int right = arr.length - 1; while (left <= right) { //说明继续查找 int mid = (left + right) / 2; if (arr[mid] == target) { return mid; } else if (arr[mid] > target) { right = mid - 1;//需要向左边查找 } else { left = mid + 1; //需要向右边查找 } } return -1; } }
11.2 分治算法
-
基本介绍:
分治法在每一层递归上都有三个步骤:
- 分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题
- 解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题
- 合并:将各个子问题的解合并为原问题的解
-
思路:
- 如果是有一个盘, A->C
如果我们有 n >= 2 情况,我们总是可以看做是两个盘 1.最下边的盘 2. 上面的盘 - 先把 最上面的盘 A->B
- 把最下边的盘 A->C
- 把 B塔的所有盘 从 B->C
- 如果是有一个盘, A->C
-
代码:
public class Hanoitower { public static void main(String[] args) { hanoiTower(10, 'A', 'B', 'C'); } //汉诺塔的移动的方法 //使用分治算法 public static void hanoiTower(int num, char a, char b, char c) { //如果只有一个盘 if (num == 1) { System.out.println("第1个盘从 " + a + "->" + c); } else { //如果我们有 n >= 2 情况,我们总是可以看做是两个盘 1.最下边的一个盘 2. 上面的所有盘 //1. 先把 最上面的所有盘 A->B, 移动过程会使用到 c hanoiTower(num - 1, a, c, b); //2. 把最下边的盘 A->C System.out.println("第" + num + "个盘从 " + a + "->" + c); //3. 把B塔的所有盘 从 B->C , 移动过程使用到 a塔 hanoiTower(num - 1, b, a, c); } } }
11.3 动态规划
-
基本介绍:
- 动态规划(Dynamic Programming)算法的核心思想是:将大问题划分为小问题进行解决,从而一步步获取最优解的处理算法
- 动态规划算法与分治算法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解
- 与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。 ( 即下一个子阶段的求解是建立在上一个子阶段的解的基础上,进行进一步的求解 )
- 动态规划可以通过填表的方式来逐步推进,得到最优解
-
思路:
-
背包问题主要是指一个给定容量的背包、若干具有一定价值和重量的物品,如何选择物品放入背包使物品的价值最大。其中又分 01 背包和完全背包(完全背包指的是:每种物品都有无限件可用)
-
这里的问题属于 01 背包,即每个物品最多放一个。而无限背包可以转化为 01 背包
-
算法的主要思想,利用动态规划来解决。每次遍历到的第 i 个物品,根据 w[i]和 v[i]来确定是否需要将该物品
放入背包中。即对于给定的 n 个物品,设 v[i]、w[i]分别为第 i 个物品的价值和重量,C 为背包的容量。再令 v[i][j]
表示在前 i 个物品中能够装入容量为 j 的背包中的最大价值
-
-
代码:
public class KnapsackProblem { public static void main(String[] args) { // TODO Auto-generated method stub int[] w = {1, 4, 3};//物品的重量 int[] val = {1500, 3000, 2000}; //物品的价值 这里val[i] 就是前面讲的v[i] int m = 4; //背包的容量 int n = val.length; //物品的个数 //创建二维数组, //v[i][j] 表示在前i个物品中能够装入容量为j的背包中的最大价值 int[][] v = new int[n + 1][m + 1]; //为了记录放入商品的情况,我们定一个二维数组 int[][] path = new int[n + 1][m + 1]; //初始化第一行和第一列, 这里在本程序中,可以不去处理,因为默认就是0 for (int i = 0; i < v.length; i++) { v[i][0] = 0; //将第一列设置为0 } for (int i = 0; i < v[0].length; i++) { v[0][i] = 0; //将第一行设置0 } //根据前面得到公式来动态规划处理 for (int i = 1; i < v.length; i++) { //不处理第一行 i是从1开始的 for (int j = 1; j < v[0].length; j++) {//不处理第一列, j是从1开始的 //公式 if (w[i - 1] > j) { // 因为我们程序i 是从1开始的,因此原来公式中的 w[i] 修改成 w[i-1] v[i][j] = v[i - 1][j]; } else { //说明: //因为我们的i 从1开始的, 因此公式需要调整成 //v[i][j]=Math.max(v[i-1][j], val[i-1]+v[i-1][j-w[i-1]]); //v[i][j] = Math.max(v[i - 1][j], val[i - 1] + v[i - 1][j - w[i - 1]]); //为了记录商品存放到背包的情况,我们不能直接的使用上面的公式,需要使用if-else来体现公式 if (v[i - 1][j] < val[i - 1] + v[i - 1][j - w[i - 1]]) { v[i][j] = val[i - 1] + v[i - 1][j - w[i - 1]]; //把当前的情况记录到path path[i][j] = 1; } else { v[i][j] = v[i - 1][j]; } } } } //输出一下v 看看目前的情况 for (int i = 0; i < v.length; i++) { for (int j = 0; j < v[i].length; j++) { System.out.print(v[i][j] + " "); } System.out.println(); } System.out.println("============================"); //输出最后我们是放入的哪些商品 //遍历path, 这样输出会把所有的放入情况都得到, 其实我们只需要最后的放入 // for(int i = 0; i < path.length; i++) { // for(int j=0; j < path[i].length; j++) { // if(path[i][j] == 1) { // System.out.printf("第%d个商品放入到背包\n", i); // } // } // } //动脑筋 int i = path.length - 1; //行的最大下标 int j = path[0].length - 1; //列的最大下标 while (i > 0 && j > 0) { //从path的最后开始找 if (path[i][j] == 1) { System.out.printf("第%d个商品放入到背包\n", i); j -= w[i - 1]; //w[i-1] } i--; } } }
11.4 KMP
-
基本介绍:
- KMP 是一个解决模式串在文本串是否出现过,如果出现过,最早出现的位置的经典算法
- Knuth-Morris-Pratt 字符串查找算法,简称为 “KMP 算法”,常用于在一个文本串 S 内查找一个模式串 P 的
出现位置,这个算法由Donald Knuth、Vaughan Pratt、James H. Morris 三人于 1977 年联合发表,故取这 3 人的
姓氏命名此算法. - KMP 方法算法就利用之前判断过信息,通过一个 next 数组,保存模式串中前后最长公共子序列的长度,每次
回溯时,通过 next 数组找到,前面匹配过的位置,省去了大量的计算时间
-
思路:
https://blog.youkuaiyun.com/v_JULY_v/article/details/7041827?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522166331315916782417047476%2522%252C%2522scm%2522%253A%252220140713.130102334…%2522%257D&request_id=166331315916782417047476&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2alltop_positive~default-1-7041827-null-null.142v47pc_rank_34_default_23,201v3control_2&utm_term=kmp&spm=1018.2226.3001.4187
-
动画:
https://www.zhihu.com/zvideo/1376978253073182720
-
代码:
public class KMPAlgorithm { public static void main(String[] args) { // TODO Auto-generated method stub String str1 = "BBC ABCDAB ABCDABCDABDE"; String str2 = "ABCDABD"; //String str2 = "BBC"; int[] next = kmpNext("ABCDABD"); //[0, 1, 2, 0] System.out.println("next=" + Arrays.toString(next)); int index = kmpSearch(str1, str2, next); System.out.println("index=" + index); // 15了 } //写出我们的kmp搜索算法 /** * * @param str1 源字符串 * @param str2 子串 * @param next 部分匹配表, 是子串对应的部分匹配表 * @return 如果是-1就是没有匹配到,否则返回第一个匹配的位置 */ public static int kmpSearch(String str1, String str2, int[] next) { //遍历 for(int i = 0, j = 0; i < str1.length(); i++) { //需要处理 str1.charAt(i) != str2.charAt(j), 去调整j的大小 //KMP算法核心点, 可以验证... while( j > 0 && str1.charAt(i) != str2.charAt(j)) { j = next[j-1]; } if(str1.charAt(i) == str2.charAt(j)) { j++; } if(j == str2.length()) {//找到了 // j = 3 i return i - j + 1; } } return -1; } //获取到一个字符串(子串) 的部分匹配值表 public static int[] kmpNext(String dest) { //创建一个next 数组保存部分匹配值 int[] next = new int[dest.length()]; next[0] = 0; //如果字符串是长度为1 部分匹配值就是0 for(int i = 1, j = 0; i < dest.length(); i++) { //当dest.charAt(i) != dest.charAt(j) ,我们需要从next[j-1]获取新的j //直到我们发现 有 dest.charAt(i) == dest.charAt(j)成立才退出 //这时kmp算法的核心点 while(j > 0 && dest.charAt(i) != dest.charAt(j)) { j = next[j-1]; } //当dest.charAt(i) == dest.charAt(j) 满足时,部分匹配值就是+1 if(dest.charAt(i) == dest.charAt(j)) { j++; } next[i] = j; } return next; } }
11.5 贪心算法
-
基本介绍:
- 贪婪算法(贪心算法)是指在对问题进行求解时,在每一步选择中都采取最好或者最优(即最有利)的选择,从而希望能够导致结果是最好或者最优的算法
- 贪婪算法所得到的结果不一定是最优的结果(有时候会是最优解),但是都是相对近似(接近)最优解的结果
-
思路:
- 遍历所有的广播电台, 找到一个覆盖了最多未覆盖的地区的电台(此电台可能包含一些已覆盖的地区,但没有关系)
- 将这个电台加入到一个集合中(比如ArrayList), 想办法把该电台覆盖的地区在下次比较时去掉。
- 重复第 1 步直到覆盖了全部的地区
-
代码:
public class GreedyAlgorithm { public static void main(String[] args) { //创建广播电台,放入到Map HashMap<String,HashSet<String>> broadcasts = new HashMap<String, HashSet<String>>(); //将各个电台放入到broadcasts HashSet<String> hashSet1 = new HashSet<String>(); hashSet1.add("北京"); hashSet1.add("上海"); hashSet1.add("天津"); HashSet<String> hashSet2 = new HashSet<String>(); hashSet2.add("广州"); hashSet2.add("北京"); hashSet2.add("深圳"); HashSet<String> hashSet3 = new HashSet<String>(); hashSet3.add("成都"); hashSet3.add("上海"); hashSet3.add("杭州"); HashSet<String> hashSet4 = new HashSet<String>(); hashSet4.add("上海"); hashSet4.add("天津"); HashSet<String> hashSet5 = new HashSet<String>(); hashSet5.add("杭州"); hashSet5.add("大连"); //加入到map broadcasts.put("K1", hashSet1); broadcasts.put("K2", hashSet2); broadcasts.put("K3", hashSet3); broadcasts.put("K4", hashSet4); broadcasts.put("K5", hashSet5); //allAreas 存放所有的地区 HashSet<String> allAreas = new HashSet<String>(); allAreas.add("北京"); allAreas.add("上海"); allAreas.add("天津"); allAreas.add("广州"); allAreas.add("深圳"); allAreas.add("成都"); allAreas.add("杭州"); allAreas.add("大连"); //创建ArrayList, 存放选择的电台集合 ArrayList<String> selects = new ArrayList<String>(); //定义一个临时的集合, 在遍历的过程中,存放遍历过程中的电台覆盖的地区和当前还没有覆盖的地区的交集 HashSet<String> tempSet = new HashSet<String>(); //定义给maxKey , 保存在一次遍历过程中,能够覆盖最大未覆盖的地区对应的电台的key //如果maxKey 不为null , 则会加入到 selects String maxKey = null; while(allAreas.size() != 0) { // 如果allAreas 不为0, 则表示还没有覆盖到所有的地区 //每进行一次while,需要 maxKey = null; //遍历 broadcasts, 取出对应key for(String key : broadcasts.keySet()) { //每进行一次for tempSet.clear(); //当前这个key能够覆盖的地区 HashSet<String> areas = broadcasts.get(key); tempSet.addAll(areas); //求出tempSet 和 allAreas 集合的交集, 交集会赋给 tempSet tempSet.retainAll(allAreas); //如果当前这个集合包含的未覆盖地区的数量,比maxKey指向的集合地区还多 //就需要重置maxKey // tempSet.size() >broadcasts.get(maxKey).size()) 体现出贪心算法的特点,每次都选择最优的 if(tempSet.size() > 0 && (maxKey == null || tempSet.size() >broadcasts.get(maxKey).size())){ maxKey = key; } } //maxKey != null, 就应该将maxKey 加入selects if(maxKey != null) { selects.add(maxKey); //将maxKey指向的广播电台覆盖的地区,从 allAreas 去掉 allAreas.removeAll(broadcasts.get(maxKey)); } } System.out.println("得到的选择结果是" + selects);//[K1,K2,K3,K5] } }
11.6 普里姆算法


普利姆的算法如下:
- 设G=(V,E)是连通网,T=(U,D)是最小生成树,V,U是顶点集合,E,D是边的集合
- 若从顶点 u 开始构造最小生成树,则从集合V中取出顶点 u 放入集合U中,标记顶点 v 的 visited[u]=1
- 若集合U中顶点 ui 与集合V-U中的顶点 vj 之间存在边,则寻找这些边中权值最小的边,但不能构成回路,将
顶点 vj 加入集合U中,将边(ui,vj)加入集合D中,标记 visited[vj]=1 - 重复步骤②,直到U与V相等,即所有顶点都被标记为访问过,此时D中有 n-1 条边
-
代码:
public class PrimAlgorithm { public static void main(String[] args) { //测试看看图是否创建ok char[] data = new char[]{'A','B','C','D','E','F','G'}; int verxs = data.length; //邻接矩阵的关系使用二维数组表示,10000这个大数,表示两个点不联通 int [][]weight=new int[][]{ {10000,5,7,10000,10000,10000,2}, {5,10000,10000,9,10000,10000,3}, {7,10000,10000,10000,8,10000,10000}, {10000,9,10000,10000,10000,4,10000}, {10000,10000,8,10000,10000,5,4}, {10000,10000,10000,4,5,10000,6}, {2,3,10000,10000,4,6,10000},}; //创建MGraph对象 MGraph graph = new MGraph(verxs); //创建一个MinTree对象 MinTree minTree = new MinTree(); minTree.createGraph(graph, verxs, data, weight); //输出 minTree.showGraph(graph); //测试普利姆算法 minTree.prim(graph, 1);// } } //创建最小生成树->村庄的图 class MinTree { //创建图的邻接矩阵 /** * * @param graph 图对象 * @param verxs 图对应的顶点个数 * @param data 图的各个顶点的值 * @param weight 图的邻接矩阵 */ public void createGraph(MGraph graph, int verxs, char data[], int[][] weight) { int i, j; for(i = 0; i < verxs; i++) {//顶点 graph.data[i] = data[i]; for(j = 0; j < verxs; j++) { graph.weight[i][j] = weight[i][j]; } } } //显示图的邻接矩阵 public void showGraph(MGraph graph) { for(int[] link: graph.weight) { System.out.println(Arrays.toString(link)); } } //编写prim算法,得到最小生成树 /** * * @param graph 图 * @param v 表示从图的第几个顶点开始生成'A'->0 'B'->1... */ public void prim(MGraph graph, int v) { //visited[] 标记结点(顶点)是否被访问过 int visited[] = new int[graph.verxs]; //visited[] 默认元素的值都是0, 表示没有访问过 // for(int i =0; i <graph.verxs; i++) { // visited[i] = 0; // } //把当前这个结点标记为已访问 visited[v] = 1; //h1 和 h2 记录两个顶点的下标 int h1 = -1; int h2 = -1; int minWeight = 10000; //将 minWeight 初始成一个大数,后面在遍历过程中,会被替换 for(int k = 1; k < graph.verxs; k++) {//因为有 graph.verxs顶点,普利姆算法结束后,有 graph.verxs-1边 //这个是确定每一次生成的子图 ,和哪个结点的距离最近 for(int i = 0; i < graph.verxs; i++) {// i结点表示被访问过的结点 for(int j = 0; j< graph.verxs;j++) {//j结点表示还没有访问过的结点 if(visited[i] == 1 && visited[j] == 0 && graph.weight[i][j] < minWeight) { //替换minWeight(寻找已经访问过的结点和未访问过的结点间的权值最小的边) minWeight = graph.weight[i][j]; h1 = i; h2 = j; } } } //找到一条边是最小 System.out.println("边<" + graph.data[h1] + "," + graph.data[h2] + "> 权值:" + minWeight); //将当前这个结点标记为已经访问 visited[h2] = 1; //minWeight 重新设置为最大值 10000 minWeight = 10000; } } } class MGraph { int verxs; //表示图的节点个数 char[] data;//存放结点数据 int[][] weight; //存放边,就是我们的邻接矩阵 public MGraph(int verxs) { this.verxs = verxs; data = new char[verxs]; weight = new int[verxs][verxs]; } }
11.7 克鲁斯卡
-
基本介绍:
- 克鲁斯卡尔(Kruskal)算法,是用来求加权连通图的最小生成树的算法。
- 基本思想:按照权值从小到大的顺序选择 n-1 条边,并保证这 n-1 条边不构成回路
- 具体做法:首先构造一个只含 n 个顶点的森林,然后依权值从小到大从连通网中选择边加入到森林中,并使森
林中不产生回路,直至森林变成一棵树为止
-
思路分析:
-
代码:
public class KruskalCase { private int edgeNum; //边的个数 private char[] vertexs; //顶点数组 private int[][] matrix; //邻接矩阵 //使用 INF 表示两个顶点不能连通 private static final int INF = Integer.MAX_VALUE; public static void main(String[] args) { char[] vertexs = {'A', 'B', 'C', 'D', 'E', 'F', 'G'}; //克鲁斯卡尔算法的邻接矩阵 int matrix[][] = { /*A*//*B*//*C*//*D*//*E*//*F*//*G*/ /*A*/ { 0, 12, INF, INF, INF, 16, 14}, /*B*/ { 12, 0, 10, INF, INF, 7, INF}, /*C*/ { INF, 10, 0, 3, 5, 6, INF}, /*D*/ { INF, INF, 3, 0, 4, INF, INF}, /*E*/ { INF, INF, 5, 4, 0, 2, 8}, /*F*/ { 16, 7, 6, INF, 2, 0, 9}, /*G*/ { 14, INF, INF, INF, 8, 9, 0}}; //大家可以在去测试其它的邻接矩阵,结果都可以得到最小生成树. //创建KruskalCase 对象实例 KruskalCase kruskalCase = new KruskalCase(vertexs, matrix); //输出构建的 kruskalCase.print(); kruskalCase.kruskal(); } //构造器 public KruskalCase(char[] vertexs, int[][] matrix) { //初始化顶点数和边的个数 int vlen = vertexs.length; //初始化顶点, 复制拷贝的方式 this.vertexs = new char[vlen]; for(int i = 0; i < vertexs.length; i++) { this.vertexs[i] = vertexs[i]; } //初始化边, 使用的是复制拷贝的方式 this.matrix = new int[vlen][vlen]; for(int i = 0; i < vlen; i++) { for(int j= 0; j < vlen; j++) { this.matrix[i][j] = matrix[i][j]; } } //统计边的条数 for(int i =0; i < vlen; i++) { for(int j = i+1; j < vlen; j++) { if(this.matrix[i][j] != INF) { edgeNum++; } } } } public void kruskal() { int index = 0; //表示最后结果数组的索引 int[] ends = new int[edgeNum]; //用于保存"已有最小生成树" 中的每个顶点在最小生成树中的终点 //创建结果数组, 保存最后的最小生成树 EData[] rets = new EData[edgeNum]; //获取图中 所有的边的集合 , 一共有12边 EData[] edges = getEdges(); System.out.println("图的边的集合=" + Arrays.toString(edges) + " 共"+ edges.length); //12 //按照边的权值大小进行排序(从小到大) sortEdges(edges); //遍历edges 数组,将边添加到最小生成树中时,判断是准备加入的边否形成了回路,如果没有,就加入 rets, 否则不能加入 for(int i=0; i < edgeNum; i++) { //获取到第i条边的第一个顶点(起点) int p1 = getPosition(edges[i].start); //p1=4 //获取到第i条边的第2个顶点 int p2 = getPosition(edges[i].end); //p2 = 5 //获取p1这个顶点在已有最小生成树中的终点 int m = getEnd(ends, p1); //m = 4 //获取p2这个顶点在已有最小生成树中的终点 int n = getEnd(ends, p2); // n = 5 //是否构成回路 if(m != n) { //没有构成回路 ends[m] = n; // 设置m 在"已有最小生成树"中的终点 <E,F> [0,0,0,0,5,0,0,0,0,0,0,0] rets[index++] = edges[i]; //有一条边加入到rets数组 } } //<E,F> <C,D> <D,E> <B,F> <E,G> <A,B>。 //统计并打印 "最小生成树", 输出 rets System.out.println("最小生成树为"); for(int i = 0; i < index; i++) { System.out.println(rets[i]); } } //打印邻接矩阵 public void print() { System.out.println("邻接矩阵为: \n"); for(int i = 0; i < vertexs.length; i++) { for(int j=0; j < vertexs.length; j++) { System.out.printf("%12d", matrix[i][j]); } System.out.println();//换行 } } /** * 功能:对边进行排序处理, 冒泡排序 * @param edges 边的集合 */ private void sortEdges(EData[] edges) { for(int i = 0; i < edges.length - 1; i++) { for(int j = 0; j < edges.length - 1 - i; j++) { if(edges[j].weight > edges[j+1].weight) {//交换 EData tmp = edges[j]; edges[j] = edges[j+1]; edges[j+1] = tmp; } } } } /** * * @param ch 顶点的值,比如'A','B' * @return 返回ch顶点对应的下标,如果找不到,返回-1 */ private int getPosition(char ch) { for(int i = 0; i < vertexs.length; i++) { if(vertexs[i] == ch) {//找到 return i; } } //找不到,返回-1 return -1; } /** * 功能: 获取图中边,放到EData[] 数组中,后面我们需要遍历该数组 * 是通过matrix 邻接矩阵来获取 * EData[] 形式 [['A','B', 12], ['B','F',7], .....] * @return */ private EData[] getEdges() { int index = 0; EData[] edges = new EData[edgeNum]; for(int i = 0; i < vertexs.length; i++) { for(int j=i+1; j <vertexs.length; j++) { if(matrix[i][j] != INF) { edges[index++] = new EData(vertexs[i], vertexs[j], matrix[i][j]); } } } return edges; } /** * 功能: 获取下标为i的顶点的终点(), 用于后面判断两个顶点的终点是否相同 * @param ends : 数组就是记录了各个顶点对应的终点是哪个,ends 数组是在遍历过程中,逐步形成 * @param i : 表示传入的顶点对应的下标 * @return 返回的就是 下标为i的这个顶点对应的终点的下标, 一会回头还有来理解 */ private int getEnd(int[] ends, int i) { // i = 4 [0,0,0,0,5,0,0,0,0,0,0,0] while(ends[i] != 0) { i = ends[i]; } return i; } } //创建一个类EData ,它的对象实例就表示一条边 class EData { char start; //边的一个点 char end; //边的另外一个点 int weight; //边的权值 //构造器 public EData(char start, char end, int weight) { this.start = start; this.end = end; this.weight = weight; } //重写toString, 便于输出边信息 @Override public String toString() { return "EData [<" + start + ", " + end + ">= " + weight + "]"; } }
11.8 迪杰斯特拉
-
基本介绍:
迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个结点到其他结点的最短路径。它的主要特点是以
起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止 -
思路:
- 设置出发顶点为 v,顶点集合 V{v1,v2,vi…},v 到 V 中各顶点的距离构成距离集合 Dis,Dis{d1,d2,di…},Dis
集合记录着 v 到图中各顶点的距离(到自身可以看作 0,v 到 vi 距离对应为 di) - 从Dis 中选择值最小的 di 并移出Dis 集合,同时移出V集合中对应的顶点 vi,此时的 v 到 vi 即为最短路径
- 更新Dis 集合,更新规则为:比较 v 到V集合中顶点的距离值,与 v 通过 vi 到 V集合中顶点的距离值,保留
值较小的一个(同时也应该更新顶点的前驱节点为 vi,表明是通过 vi 到达的) - 重复执行两步骤,直到最短路径顶点为目标顶点即可结束
- 设置出发顶点为 v,顶点集合 V{v1,v2,vi…},v 到 V 中各顶点的距离构成距离集合 Dis,Dis{d1,d2,di…},Dis
-
视频:
https://www.bilibili.com/video/BV1EW411u7th?p=13&vd_source=0733adff24bb4c66f106d178f11ed3d3
-
代码:
public class DijkstraAlgorithm { public static void main(String[] args) { char[] vertex = { 'A', 'B', 'C', 'D', 'E', 'F', 'G' }; //邻接矩阵 int[][] matrix = new int[vertex.length][vertex.length]; final int N = 65535;// 表示不可以连接 matrix[0]=new int[]{N,5,7,N,N,N,2}; matrix[1]=new int[]{5,N,N,9,N,N,3}; matrix[2]=new int[]{7,N,N,N,8,N,N}; matrix[3]=new int[]{N,9,N,N,N,4,N}; matrix[4]=new int[]{N,N,8,N,N,5,4}; matrix[5]=new int[]{N,N,N,4,5,N,6}; matrix[6]=new int[]{2,3,N,N,4,6,N}; //创建 Graph对象 Graph graph = new Graph(vertex, matrix); //测试, 看看图的邻接矩阵是否ok graph.showGraph(); //测试迪杰斯特拉算法 graph.dsj(2);//C graph.showDijkstra(); } } class Graph { private char[] vertex; // 顶点数组 private int[][] matrix; // 邻接矩阵 private VisitedVertex vv; //已经访问的顶点的集合 // 构造器 public Graph(char[] vertex, int[][] matrix) { this.vertex = vertex; this.matrix = matrix; } //显示结果 public void showDijkstra() { vv.show(); } // 显示图 public void showGraph() { for (int[] link : matrix) { System.out.println(Arrays.toString(link)); } } //迪杰斯特拉算法实现 /** * * @param index 表示出发顶点对应的下标 */ public void dsj(int index) { vv = new VisitedVertex(vertex.length, index); update(index);//更新index顶点到周围顶点的距离和前驱顶点 for(int j = 1; j <vertex.length; j++) { index = vv.updateArr();// 选择并返回新的访问顶点 update(index); // 更新index顶点到周围顶点的距离和前驱顶点 } } //更新index下标顶点到周围顶点的距离和周围顶点的前驱顶点, private void update(int index) { int len = 0; //根据遍历我们的邻接矩阵的 matrix[index]行 for(int j = 0; j < matrix[index].length; j++) { // len 含义是 : 出发顶点到index顶点的距离 + 从index顶点到j顶点的距离的和 len = vv.getDis(index) + matrix[index][j]; // 如果j顶点没有被访问过,并且 len 小于出发顶点到j顶点的距离,就需要更新 if(!vv.in(j) && len < vv.getDis(j)) { vv.updatePre(j, index); //更新j顶点的前驱为index顶点 vv.updateDis(j, len); //更新出发顶点到j顶点的距离 } } } } // 已访问顶点集合 class VisitedVertex { // 记录各个顶点是否访问过 1表示访问过,0未访问,会动态更新 public int[] already_arr; // 每个下标对应的值为前一个顶点下标, 会动态更新 public int[] pre_visited; // 记录出发顶点到其他所有顶点的距离,比如G为出发顶点,就会记录G到其它顶点的距离,会动态更新,求的最短距离就会存放到dis public int[] dis; //构造器 /** * * @param length :表示顶点的个数 * @param index: 出发顶点对应的下标, 比如G顶点,下标就是6 */ public VisitedVertex(int length, int index) { this.already_arr = new int[length]; this.pre_visited = new int[length]; this.dis = new int[length]; //初始化 dis数组 Arrays.fill(dis, 65535); this.already_arr[index] = 1; //设置出发顶点被访问过 this.dis[index] = 0;//设置出发顶点的访问距离为0 } /** * 功能: 判断index顶点是否被访问过 * @param index * @return 如果访问过,就返回true, 否则访问false */ public boolean in(int index) { return already_arr[index] == 1; } /** * 功能: 更新出发顶点到index顶点的距离 * @param index * @param len */ public void updateDis(int index, int len) { dis[index] = len; } /** * 功能: 更新pre这个顶点的前驱顶点为index顶点 * @param pre * @param index */ public void updatePre(int pre, int index) { pre_visited[pre] = index; } /** * 功能:返回出发顶点到index顶点的距离 * @param index */ public int getDis(int index) { return dis[index]; } /** * 继续选择并返回新的访问顶点, 比如这里的G 完后,就是 A点作为新的访问顶点(注意不是出发顶点) * @return */ public int updateArr() { int min = 65535, index = 0; for(int i = 0; i < already_arr.length; i++) { if(already_arr[i] == 0 && dis[i] < min ) { min = dis[i]; index = i; } } //更新 index 顶点被访问过 already_arr[index] = 1; return index; } //显示最后的结果 //即将三个数组的情况输出 public void show() { System.out.println("=========================="); //输出already_arr for(int i : already_arr) { System.out.print(i + " "); } System.out.println(); //输出pre_visited for(int i : pre_visited) { System.out.print(i + " "); } System.out.println(); //输出dis for(int i : dis) { System.out.print(i + " "); } System.out.println(); //为了好看最后的最短距离,我们处理 char[] vertex = { 'A', 'B', 'C', 'D', 'E', 'F', 'G' }; int count = 0; for (int i : dis) { if (i != 65535) { System.out.print(vertex[count] + "("+i+") "); } else { System.out.println("N "); } count++; } System.out.println(); } }
11.9 佛洛依德
-
基本介绍:
- 和Dijkstra 算法一样,弗洛伊德(Floyd)算法也是一种用于寻找给定的加权图中顶点间最短路径的算法。该算法
名称以创始人之一、1978 年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名 - 弗洛伊德算法(Floyd)计算图中各个顶点之间的最短路径
- 迪杰斯特拉算法用于计算图中某一个顶点到其他顶点的最短路径
- 弗洛伊德算法 VS 迪杰斯特拉算法:迪杰斯特拉算法通过选定的被访问顶点,求出从出发访问顶点到其他顶点
的最短路径;弗洛伊德算法中每一个顶点都是出发访问点,所以需要将每一个顶点看做被访问顶点,求出从每
一个顶点到其他顶点的最短路径
- 和Dijkstra 算法一样,弗洛伊德(Floyd)算法也是一种用于寻找给定的加权图中顶点间最短路径的算法。该算法
-
思路:
- 设置顶点 vi 到顶点 vk 的最短路径已知为 Lik,顶点 vk 到 vj 的最短路径已知为 Lkj,顶点 vi 到 vj 的路径为 Lij,
则 vi 到 vj 的最短路径为:min((Lik+Lkj),Lij),vk 的取值为图中所有顶点,则可获得 vi 到 vj 的最短路径 - 至于 vi 到 vk 的最短路径 Lik 或者 vk 到 vj 的最短路径 Lkj,是以同样的方式获得
- 设置顶点 vi 到顶点 vk 的最短路径已知为 Lik,顶点 vk 到 vj 的最短路径已知为 Lkj,顶点 vi 到 vj 的路径为 Lij,
-
代码:
public class FloydAlgorithm { public static void main(String[] args) { // 测试看看图是否创建成功 char[] vertex = { 'A', 'B', 'C', 'D', 'E', 'F', 'G' }; //创建邻接矩阵 int[][] matrix = new int[vertex.length][vertex.length]; final int N = 65535; matrix[0] = new int[] { 0, 5, 7, N, N, N, 2 }; matrix[1] = new int[] { 5, 0, N, 9, N, N, 3 }; matrix[2] = new int[] { 7, N, 0, N, 8, N, N }; matrix[3] = new int[] { N, 9, N, 0, N, 4, N }; matrix[4] = new int[] { N, N, 8, N, 0, 5, 4 }; matrix[5] = new int[] { N, N, N, 4, 5, 0, 6 }; matrix[6] = new int[] { 2, 3, N, N, 4, 6, 0 }; //创建 Graph 对象 Graph graph = new Graph(vertex.length, matrix, vertex); //调用弗洛伊德算法 graph.floyd(); graph.show(); } } // 创建图 class Graph { private char[] vertex; // 存放顶点的数组 private int[][] dis; // 保存,从各个顶点出发到其它顶点的距离,最后的结果,也是保留在该数组 private int[][] pre;// 保存到达目标顶点的前驱顶点 // 构造器 /** * * @param length * 大小 * @param matrix * 邻接矩阵 * @param vertex * 顶点数组 */ public Graph(int length, int[][] matrix, char[] vertex) { this.vertex = vertex; this.dis = matrix; this.pre = new int[length][length]; // 对pre数组初始化, 注意存放的是前驱顶点的下标 for (int i = 0; i < length; i++) { Arrays.fill(pre[i], i); } } // 显示pre数组和dis数组 public void show() { //为了显示便于阅读,我们优化一下输出 char[] vertex = { 'A', 'B', 'C', 'D', 'E', 'F', 'G' }; for (int k = 0; k < dis.length; k++) { // 先将pre数组输出的一行 for (int i = 0; i < dis.length; i++) { System.out.print(vertex[pre[k][i]] + " "); } System.out.println(); // 输出dis数组的一行数据 for (int i = 0; i < dis.length; i++) { System.out.print("("+vertex[k]+"到"+vertex[i]+"的最短路径是" + dis[k][i] + ") "); } System.out.println(); System.out.println(); } } //弗洛伊德算法, 比较容易理解,而且容易实现 public void floyd() { int len = 0; //变量保存距离 //对中间顶点遍历, k 就是中间顶点的下标 [A, B, C, D, E, F, G] for(int k = 0; k < dis.length; k++) { // //从i顶点开始出发 [A, B, C, D, E, F, G] for(int i = 0; i < dis.length; i++) { //到达j顶点 // [A, B, C, D, E, F, G] for(int j = 0; j < dis.length; j++) { len = dis[i][k] + dis[k][j];// => 求出从i 顶点出发,经过 k中间顶点,到达 j 顶点距离 if(len < dis[i][j]) {//如果len小于 dis[i][j] dis[i][j] = len;//更新距离 pre[i][j] = pre[k][j];//更新前驱顶点 } } } } } }
11.10 马踏棋盘
-
思路:
-
代码:
public class HorseChessboard { private static int X; // 棋盘的列数 private static int Y; // 棋盘的行数 //创建一个数组,标记棋盘的各个位置是否被访问过 private static boolean visited[]; //使用一个属性,标记是否棋盘的所有位置都被访问 private static boolean finished; // 如果为true,表示成功 public static void main(String[] args) { System.out.println("骑士周游算法,开始运行~~"); //测试骑士周游算法是否正确 X = 8; Y = 8; int row = 1; //马儿初始位置的行,从1开始编号 int column = 1; //马儿初始位置的列,从1开始编号 //创建棋盘 int[][] chessboard = new int[X][Y]; visited = new boolean[X * Y];//初始值都是false //测试一下耗时 long start = System.currentTimeMillis(); traversalChessboard(chessboard, row - 1, column - 1, 1); long end = System.currentTimeMillis(); System.out.println("共耗时: " + (end - start) + " 毫秒"); //输出棋盘的最后情况 for(int[] rows : chessboard) { for(int step: rows) { System.out.print(step + "\t"); } System.out.println(); } } /** * 完成骑士周游问题的算法 * @param chessboard 棋盘 * @param row 马儿当前的位置的行 从0开始 * @param column 马儿当前的位置的列 从0开始 * @param step 是第几步 ,初始位置就是第1步 */ public static void traversalChessboard(int[][] chessboard, int row, int column, int step) { chessboard[row][column] = step; //row = 4 X = 8 column = 4 = 4 * 8 + 4 = 36 visited[row * X + column] = true; //标记该位置已经访问 //获取当前位置可以走的下一个位置的集合 ArrayList<Point> ps = next(new Point(column, row)); //对ps进行排序,排序的规则就是对ps的所有的Point对象的下一步的位置的数目,进行非递减排序 sort(ps); //遍历 ps while(!ps.isEmpty()) { Point p = ps.remove(0);//取出下一个可以走的位置 //判断该点是否已经访问过 if(!visited[p.y * X + p.x]) {//说明还没有访问过 traversalChessboard(chessboard, p.y, p.x, step + 1); } } //判断马儿是否完成了任务,使用 step 和应该走的步数比较 , //如果没有达到数量,则表示没有完成任务,将整个棋盘置0 //说明: step < X * Y 成立的情况有两种 //1. 棋盘到目前位置,仍然没有走完 //2. 棋盘处于一个回溯过程 if(step < X * Y && !finished ) { chessboard[row][column] = 0; visited[row * X + column] = false; } else { finished = true; } } /** * 功能: 根据当前位置(Point对象),计算马儿还能走哪些位置(Point),并放入到一个集合中(ArrayList), 最多有8个位置 * @param curPoint * @return */ public static ArrayList<Point> next(Point curPoint) { //创建一个ArrayList ArrayList<Point> ps = new ArrayList<Point>(); //创建一个Point Point p1 = new Point(); //表示马儿可以走5这个位置 if((p1.x = curPoint.x - 2) >= 0 && (p1.y = curPoint.y -1) >= 0) { ps.add(new Point(p1)); } //判断马儿可以走6这个位置 if((p1.x = curPoint.x - 1) >=0 && (p1.y=curPoint.y-2)>=0) { ps.add(new Point(p1)); } //判断马儿可以走7这个位置 if ((p1.x = curPoint.x + 1) < X && (p1.y = curPoint.y - 2) >= 0) { ps.add(new Point(p1)); } //判断马儿可以走0这个位置 if ((p1.x = curPoint.x + 2) < X && (p1.y = curPoint.y - 1) >= 0) { ps.add(new Point(p1)); } //判断马儿可以走1这个位置 if ((p1.x = curPoint.x + 2) < X && (p1.y = curPoint.y + 1) < Y) { ps.add(new Point(p1)); } //判断马儿可以走2这个位置 if ((p1.x = curPoint.x + 1) < X && (p1.y = curPoint.y + 2) < Y) { ps.add(new Point(p1)); } //判断马儿可以走3这个位置 if ((p1.x = curPoint.x - 1) >= 0 && (p1.y = curPoint.y + 2) < Y) { ps.add(new Point(p1)); } //判断马儿可以走4这个位置 if ((p1.x = curPoint.x - 2) >= 0 && (p1.y = curPoint.y + 1) < Y) { ps.add(new Point(p1)); } return ps; } //根据当前这个一步的所有的下一步的选择位置,进行非递减排序, 减少回溯的次数 public static void sort(ArrayList<Point> ps) { ps.sort(new Comparator<Point>() { @Override public int compare(Point o1, Point o2) { // TODO Auto-generated method stub //获取到o1的下一步的所有位置个数 int count1 = next(o1).size(); //获取到o2的下一步的所有位置个数 int count2 = next(o2).size(); if(count1 < count2) { return -1; } else if (count1 == count2) { return 0; } else { return 1; } } }); } }