| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 10518 | Accepted: 3715 |
Description
Windy has a country, and he wants to build an army to protect his country. He has picked up N girls and M boys and wants to collect them to be his soldiers. To collect a soldier without any privilege, he must pay 10000 RMB. There are some relationships between girls and boys and Windy can use these relationships to reduce his cost. If girl x and boy y have a relationship d and one of them has been collected, Windy can collect the other one with 10000-d RMB. Now given all the relationships between girls and boys, your assignment is to find the least amount of money Windy has to pay. Notice that only one relationship can be used when collecting one soldier.
Input
The first line of input is the number of test case.
The first line of each test case contains three integers, N, M and
R.
Then R lines followed, each contains three integers xi,
yi and di.
There is a blank line before each test case.
1 ≤ N, M ≤ 10000
0 ≤ R ≤ 50,000
0 ≤ xi < N
0 ≤ yi < M
0 < di < 10000
Output
Sample Input
2 5 5 8 4 3 6831 1 3 4583 0 0 6592 0 1 3063 3 3 4975 1 3 2049 4 2 2104 2 2 781 5 5 10 2 4 9820 3 2 6236 3 1 8864 2 4 8326 2 0 5156 2 0 1463 4 1 2439 0 4 4373 3 4 8889 2 4 3133
Sample Output
71071 54223
Kruskal + 并查集求最大生成树
#include <stdio.h>
#include <stdlib.h>
int N, M, R;
int group[20005];
struct node
{
int u;
int v;
int w;
} map[50005];
int cmp(const void *a, const void *b)
{
return (*(node*)b).w - (*(node*)a).w;
}
int find(int x)
{
if(group[x] == x)
return x;
else
return group[x] = find(group[x]);
}
bool unite(int i, int j)
{
i = find(i);
j = find(j);
if(i != j)
{
group[i] = j;
return false;
}
return true;
}
int main()
{
int T, A, B, C, i, sum;
scanf("%d", &T);
while(T--)
{
scanf("%d%d%d", &N, &M, &R);
for(i = 1; i <= R; i++)
{
scanf("%d%d%d", &A, &B, &C);
map[i].u = A + 1;
map[i].v = B + N + 1;
map[i].w = C;
}
qsort(&map[1], R, sizeof(map[1]), cmp);
for(i = 1; i <= N + M; i++)
group[i] = i;
sum = 10000 * (N + M);
for(i = 1; i <= R; i++)
if(!unite(map[i].u, map[i].v))
sum -= map[i].w;
printf("%d\n", sum);
}
return 0;
}

本文深入探讨了并查集在最大生成树问题中的应用,通过实例展示了如何优化数据结构来解决实际问题。利用Kruskal算法结合并查集,实现最小花费收集士兵的任务,涉及关系匹配和成本计算,为读者提供了解决类似问题的思路。
1230

被折叠的 条评论
为什么被折叠?



