Problem Description
Let A1, A2, ... , AN be N elements. You need to deal with two kinds of operations. One type of operation is to add a given number to a few numbers in a given interval. The other is to query the value of some element.
Input
There are a lot of test cases. The first line contains an integer N. (1 <= N <= 50000) The second line contains N numbers which are the initial values of A1, A2, ... , AN. (-10,000,000 <= the initial value of Ai <= 10,000,000) The third line contains an integer
Q. (1 <= Q <= 50000) Each of the following Q lines represents an operation. "1 a b k c" means adding c to each of Ai which satisfies a <= i <= b and (i - a) % k == 0. (1 <= a <= b <= N, 1 <= k <= 10, -1,000 <= c <= 1,000) "2 a" means querying the value of
Aa. (1 <= a <= N)
Output
For each test case, output several lines to answer all query operations.
Sample Input
4 1 1 1 1 14 2 1 2 2 2 3 2 4 1 2 3 1 2 2 1 2 2 2 3 2 4 1 1 4 2 1 2 1 2 2 2 3 2 4
Sample Output
1 1 1 1 1 3 3 1 2 3 4 1
树状数组很有趣的一种做法
代码:
#include<iostream>
#include<string>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<iomanip>
#include<queue>
#include<cstring>
#include<map>
using namespace std;
typedef long long ll;
#define M 50005
int tree[M][11][11];
int p[M];
int n;
inline int lowbit(int i)
{
return i&(-i);
}
void update(int x,int k,int mod,int v)
{
while(x<=n)
{
tree[x][k][mod]+=v;
x+=lowbit(x);
}
}
int query(int x,int y)
{
int ret=0,i;
while(x>0)
{
for(i=1;i<=10;i++)
{
ret+=tree[x][i][y%i];
}
x-=lowbit(x);
}
return ret;
}
int main()
{
int q,i,op,a,b,k,c;
while(scanf("%d",&n)!=EOF)
{
for(i=1;i<=n;i++)
scanf("%d",&p[i]);
memset(tree,0,sizeof(tree));
scanf("%d",&q);
while(q--)
{
scanf("%d",&op);
if(op==2)
{
scanf("%d",&a);
int ans=query(a,a);
printf("%d\n",p[a]+ans);
}
else
{
scanf("%d%d%d%d",&a,&b,&k,&c);
update(a,k,a%k,c);
update(b+1,k,a%k,-c);
}
}
}
return 0;
}