论文翻译:Deep Occlusion Reasoning for Multi-Camera Multi-Target Detection

本文档翻译自ICCV2017的一篇论文,探讨了如何利用深度学习解决多摄像机环境下的多目标检测问题,特别关注了深度单视图检测、多摄像头行人检测以及结合卷积神经网络(CNNs)和条件随机场(CRFs)的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

来源:ICCV2017

Abstract

        单个2D图像中的人物检测近年来已经得到大大改善。 然而,这一进展很少渗透到多摄像机多人追踪算法中,当场景变得非常拥挤时,其检测性能仍然严重恶化。 在本论文中,我们引入了一个新的架构,结合了卷积神经网络和条件随机场来明确地模拟这些模糊。 其中一个关键要素是高阶CRF术语,模拟潜在的阻塞,并且即使在许多人在场的情况下,我们的方法仍然具有鲁棒性。  我们的模型是端到端的训练,我们证明它在挑战性的场景上胜过了几种最先进的算法。

1. Introduction

        多摄像机多目标跟踪(MCMT)算法在复杂环境中追踪人物已经取得了一定的效果。在深度学习出现之前,一些最有效的方法依赖于简单的背景减除、几何、稀疏性约束以及遮挡推理[12,6,1]。鉴于背景减除的有限区分能力,只要场景中没有太多人,他们的工作就非常出色。然而,随着人员密度的增加,它们的性能下降,使得背景减法作为输入的信息量越来越少。
        从那之后,基于深度学习的单镜头人物检测算法[23,19,28]已经成为最有效的算法[28]。然而,这些优秀的算法很少被用于MCMT。近期的一些算法,如[27],试图通过首先检测单个图像中的人,将检测映射到共同的参考帧中,并最终将它们对应以实现3D定位并消除误报。如图1所示,出于两个原因,这很容易出错。首先,参考帧中的映射是不准确的,特别是当二维检测器没有被专门训练时。其次,映射之前通常对2D检测器的输出进行非最大抑制(NMS),这没有考虑使用多相机的几何结构来解决歧义问题。
### Multi-Camera Tracking Objectives and Goals In the context of computer vision, multi-camera tracking aims to monitor and follow objects across multiple camera views seamlessly. The primary objective is to maintain consistent identification and localization of targets as they move through different fields of view provided by a networked system of cameras. The specific goals include ensuring accurate detection and recognition of individuals or entities within each frame captured from various angles and positions[^1]. This involves addressing challenges such as occlusion, varying lighting conditions, and changes in appearance due to perspective differences between cameras. Another critical goal is achieving real-time performance while maintaining high precision in tracking accuracy over time. Systems must be capable of processing large volumes of video streams efficiently without significant delays that could compromise operational effectiveness[^2]. To accomplish these tasks effectively, advanced algorithms integrate intelligence features like deep learning models trained specifically for object classification and re-identification across non-overlapping areas covered by separate devices forming part of an integrated surveillance setup. ```python import cv2 from mtcnn import MTCNN detector = MTCNN() def detect_faces(image_path): image = cv2.imread(image_path) result = detector.detect_faces(image) bounding_boxes = [] for face in result: bbox = face['box'] bounding_boxes.append(bbox) return bounding_boxes ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值