HDU5008--Boring String Problem(SA+二分)

本文介绍了一种用于处理字符串查询的高效算法,通过构建后缀数组和高度数组来快速定位特定查询条件下的子串。该算法利用了二分查找和区间最小查询等技巧,实现了对大规模字符串的有效处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem Description
In this problem, you are given a string s and q queries.

For each query, you should answer that when all distinct substrings of string s were sorted lexicographically, which one is the k-th smallest. 

A substring si...j of the string s = a1a2 ...an(1 ≤ i ≤ j ≤ n) is the string aiai+1 ...aj. Two substrings sx...y and sz...w are cosidered to be distinct if sx...y ≠ Sz...w
 

Input
The input consists of multiple test cases.Please process till EOF. 

Each test case begins with a line containing a string s(|s| ≤ 105) with only lowercase letters.

Next line contains a postive integer q(1 ≤ q ≤ 105), the number of questions.

q queries are given in the next q lines. Every line contains an integer v. You should calculate the k by k = (l⊕r⊕v)+1(l, r is the output of previous question, at the beginning of each case l = r = 0, 0 < k < 263, “⊕” denotes exclusive or)
 

Output
For each test case, output consists of q lines, the i-th line contains two integers l, r which is the answer to the i-th query. (The answer l,r satisfies that sl...r is the k-th smallest and if there are several l,r available, ouput l,r which with the smallest l. If there is no l,r satisfied, output “0 0”. Note that s1...n is the whole string)
 

Sample Input
aaa 4 0 2 3 5
 

Sample Output
1 1 1 3 1 2 0 0
思路:每个sa[i]会贡献的新子串数为len-sa[i]-height[i];
用前缀和搞出来,那么很容易求出一个l,r满足为所求子串(但是此时不是序号最小)
这里有个地方要想清楚,序号的更新,这个串要么为sa[i]的一部分,要么为sa[>i]的一部分。不可能在sa[<i]。
不然就不是sa[i]贡献的新子串了。。所以只需二分右端点。。最后就是RMQ求最小序号了。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
using namespace std;
#define maxn 240080
#define inf 0x3f3f3f3f
#define LL long long int
int str[maxn],vis[maxn];
char s[maxn];
int sa[maxn],t[maxn],t2[maxn],c[maxn],key[maxn];
int height[maxn],Rank[maxn];
int len1,len2;
int Min[maxn][20],lca[maxn][20];
LL dp[maxn];
inline int max(int a,int b)
{
    return a>b?a:b;
}
/*
用SA模板注意在最后添加一个比所有字符都小的字符。
key[n] = 0;
build_sa(key,n+1,m);
getHeight(key,n+1);
显然sa[0] 就是最后那个位置。。。
height[i] 表示 sa[i] 和 sa[i-1] 的最长公共前缀。。
*/

void build_sa(int * s,int n,int m)
{
    int i,*x = t,*y = t2;
    for(i = 0;i < m;i++)    c[i] = 0;
    for(i = 0;i < n;i++)    c[ x[i] = s[i] ]++;
    for(i = 1;i < m;i++)    c[i] += c[i-1];
    for(i = n-1;i >= 0;i--)    sa[--c[x[i]]] = i;
    for(int k = 1;k <= n;k <<= 1)
    {
        int p = 0;
        for(i = n - k;i < n;i++)    y[p++] = i;
        for(i = 0;i < n;i++)    if(sa[i] >= k)    y[p++] = sa[i] - k;
        for(i = 0;i < m;i++)    c[i] = 0;
        for(i = 0;i < n;i++)    c[ x[y[i]] ]++;
        for(i = 0;i < m;i++)    c[i] += c[i-1];
        for(i = n-1;i >= 0;i--)    sa[--c[x[y[i]]]] = y[i];
        //根据sa和y数组计算新的数y组
        swap(x,y);
        p = 1;    x[sa[0]] = 0;
        for(i = 1;i < n;i++)
            x[sa[i]] = y[sa[i-1]] == y[sa[i]] && y[sa[i-1] + k] == y[sa[i] + k] ? p-1:p++;
        if(p >= n)    break;
        m = p;
    }
}

void getHeight(int * s,int n)
{
    int i,j,k = 0;
    for(i = 0;i < n;i++)    Rank[sa[i]] = i;
    for(i = 0;i < n;i++)    
    {
        if(k) k--;
        int j = sa[Rank[i]-1];
        while(s[i+k] == s[j+k])        k++;
        height[Rank[i]] = k;
    }
}

void RMQ_INIT(int n)//求lca
{
    for(int i = 1;i < n;i++)    lca[i][0] = height[i];
	for(int j = 1;(1<<j)<=n;j++)
	{
		for(int i = 0;i+(1<<j)-1<n;i++)
		{
			lca[i][j] = min(lca[i][j-1],lca[i+(1<<(j-1))][j-1]);
		}
	}
}

int RMQ_Query(int l,int r)
{
    int k = 0;
    while((1<<(k+1) <= r-l+1)) k++;
    return min(lca[l][k],lca[r-(1<<k)+1][k]);
}
void RMQ_INIT1(int n)//求区间最小,这是求出sa后求得
{
    for(int i = 1;i < n;i++)    key[i] = sa[i]+1;
    for(int i = 1;i < n;i++)    Min[i][0] = key[i];
    for(int j = 1;(1<<j)<=n;j++)
	{
		for(int i = 0;i+(1<<j)-1<n;i++)
		{
			Min[i][j] = min(Min[i][j-1],Min[i+(1<<(j-1))][j-1]);
		}
	}
}
int RMQ_Query1(int l,int r)//
{
    int k = 0;
    while((1<<(k+1)) <= r-l+1) k++;
    return min(Min[l][k],Min[r-(1<<k)+1][k]);
}
int main()
{
   // freopen("in.txt","r",stdin);
    while(scanf("%s",s)!=EOF)
    {
        int len = strlen(s);
        for(int i = 0;i < len;i++)
            str[i] = s[i]-'a'+2;
        str[len] = 0;
        build_sa(str,len+1,30);
        getHeight(str,len+1);
        dp[0] = 0;
        dp[1] = len-sa[1];
        for(int i = 2;i <= len;i++)
        {
            LL add = len-sa[i]-height[i];
            dp[i] = dp[i-1] + add;
        }
        RMQ_INIT(len+1);
        RMQ_INIT1(len+1);
        LL l = 0,r = 0,v;
        int q;    scanf("%d",&q);
        while(q--)
        {
            scanf("%I64d",&v);
            LL k = (l^r^v)+1;
            if(k > dp[len])
            {
                l = r = 0;
                cout << 0 << " " << 0 << endl;
                continue;
            }
            int pos = lower_bound(dp+1,dp+1+len,k)-dp;
            k -= dp[pos-1];
            int L = sa[pos];
            int R = L+k+height[pos]-1;////非常没问题
            //这样从L 到 R就是所要求的字符串,但是还不是满足最小的序号的
            int Len = R-L+1;
            int ll = pos+1,rr = len;
            int ans = pos;
            while(ll <= rr)
            {
                int mid = (ll+rr)>>1;
                if(RMQ_Query(pos+1,mid) < Len) rr = mid-1;
                else 
                {
                    ans = mid;
                    ll = mid+1;
                }
            }
            int fuck = RMQ_Query1(pos,ans);
            l = fuck,r = fuck+Len-1;
            printf("%I64d %I64d\n",l,r);
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值