给出两个线段(p1, q1) 和(p2, q2)
当给给出三个点a,b,c后,这三个点的关系 可能是逆时针、顺时针和共线。
当下面的一种情况成立时(仅有一种情况),他们相交:
1(p1,q1,p2) (p1,q1,p2)的方向不同 且(p2,q2,p1)(p2,q2,q1)的方向不同
2 (p1,q1,p2) (p1,q1,p2)(p2,q2,p1)(p2,q2,q1) 共线且p1,q1至少有一个在p2,q2中间或相反。
/ A C++ program to check if two given line segments intersect
#include <iostream>
using
namespace
std;
struct
Point
{
int
x;
int
y;
};
// Given three colinear points p, q, r, the function checks if
// point q lies on line segment 'pr'
bool
onSegment(Point p, Point q, Point r)
{
if
(q.x <= max(p.x, r.x) && q.x >= min(p.x, r.x) &&
q.y <= max(p.y, r.y) && q.y >= min(p.y, r.y))
return
true
;
return
false
;
}
// To find orientation of ordered triplet (p, q, r).
// The function returns following values
// 0 --> p, q and r are colinear
// 1 --> Clockwise
// 2 --> Counterclockwise
int
orientation(Point p, Point q, Point r)
{
// See 10th slides from following link for derivation of the formula
// http://www.dcs.gla.ac.uk/~pat/52233/slides/Geometry1x1.pdf
int
val = (q.y - p.y) * (r.x - q.x) -
(q.x - p.x) * (r.y - q.y);
if
(val == 0)
return
0;
// colinear
return
(val > 0)? 1: 2;
// clock or counterclock wise
}
// The main function that returns true if line segment 'p1q1'
// and 'p2q2' intersect.
bool
doIntersect(Point p1, Point q1, Point p2, Point q2)
{
// Find the four orientations needed for general and
// special cases
int
o1 = orientation(p1, q1, p2);
int
o2 = orientation(p1, q1, q2);
int
o3 = orientation(p2, q2, p1);
int
o4 = orientation(p2, q2, q1);
// General case
if
(o1 != o2 && o3 != o4)
return
true
;
// Special Cases
// p1, q1 and p2 are colinear and p2 lies on segment p1q1
if
(o1 == 0 && onSegment(p1, p2, q1))
return
true
;
// p1, q1 and p2 are colinear and q2 lies on segment p1q1
if
(o2 == 0 && onSegment(p1, q2, q1))
return
true
;
// p2, q2 and p1 are colinear and p1 lies on segment p2q2
if
(o3 == 0 && onSegment(p2, p1, q2))
return
true
;
// p2, q2 and q1 are colinear and q1 lies on segment p2q2
if
(o4 == 0 && onSegment(p2, q1, q2))
return
true
;
return
false
;
// Doesn't fall in any of the above cases
}
// Driver program to test above functions
int
main()
{
struct
Point p1 = {1, 1}, q1 = {10, 1};
struct
Point p2 = {1, 2}, q2 = {10, 2};
doIntersect(p1, q1, p2, q2)? cout <<
"Yes\n"
: cout <<
"No\n"
;
p1 = {10, 0}, q1 = {0, 10};
p2 = {0, 0}, q2 = {10, 10};
doIntersect(p1, q1, p2, q2)? cout <<
"Yes\n"
: cout <<
"No\n"
;
p1 = {-5, -5}, q1 = {0, 0};
p2 = {1, 1}, q2 = {10, 10};
doIntersect(p1, q1, p2, q2)? cout <<
"Yes\n"
: cout <<
"No\n"
;
return
0;
}